Anleitung zur Installation, Bedienung und Instandhaltung des Kessels

THERM 14 KD.A, KDZ.A, KDZ5.A
THERM 17 KD.A, KDZ.A, KDZ5.A, KDZ10.A
THERM 28 KD.A, KDZ.A, KDC.A, KDZ5.A, KDZ10.A

Wand-Kondensations-Gaskessel

Anleitung zur Installation, Bedienung und Instandhaltung des Kessels

THERM 14 KD.A, KDZ.A, KDZ5.A THERM 17 KD.A, KDZ.A, KDZ5.A, KDZ10.A THERM 28 KD.A, KDZ.A, KDC.A, KDZ5.A, KDZ10.A

INHALT

1.	Allg	gemeine Informationen	
	1.1	Verwendung	
	1.2	Details über das Gerät	
		1.2.1 Beschreibung des Geräts	
		1.2.2 Ausführungsvarianten	
		1.2.4 Vereinfachte Hydraulik- und Funktionsschemen (dienen als Unterlage für die Montage)	. 5
	1.3	Betriebssicherheit	
	1.4		
		Zusammensetzung der Kessel	
2.		lienungsanleitung	
	2.1	Bedienung und Signalisierung	15
		2.1.1 Bedienfeld des Kessels	
		2.1.2 LCD Display	16
		2.1.3 Informationsmenü	
		2.1.4 Fehlermeldungen	
	2.2	Ingangsetzung und Ausschaltung des Kessels	
		2.2.1 Inbetriebnahme 2.2.2 Außerbetriebnahme des Kessels	16
	2.3	2.2.2 Außerbetriebnahme des Kessels	
	2.5	2.3.1 Betrieb des Kessels ohne Raumthermostat bzw. Regler	10
		2.3.2 Betrieb des Kessels mit einem Raumthermostat	
		2.3.3 Betrieb des Kessels unter Ausnutzung der eingebauten Äquithermregulierung	20
		2.3.4 Betrieb des Kessels mit übergeordneten Äquithermregler	
		2.3.5 Erhitzung von Warmwasser (WW)	
		2.3.5.1 Speicher-WW-Aufbereitung – BESCHREIBUNG DER FUNKTIONEN	
		2.3.5.2 WW-Durchlauferhitzung – BESCHREIBUNG DER FUNKTIONEN	
	2.4	2.3.6 Erhitzung von Warmwasser im Akkumulationsspeicher in Verbindung mit Solarpaneelen	
	2.4 2.5	Ausgewählte Schutzfunktionen des Kessels	
	2.5	2.5.1 Nachfüllen des Heizsystems	
	2.6	Garantie und Garantiebedingungen	
3		eitung zur Installation	
٥.	3.1	Grundanweisungen zur Montage des Kessels	
	3.2	Komplettheit der Lieferung	
	3.3	Platzierung des Kessels	26
	3.4	Aufhängen des Kessels	27
	3.5	Anschluss des Kessels an das Warmwassersystem	
		3.5.1 Maße und Anschluss	
		3.5.2 Graphen der Anschlussüberdrücke des Heizwassers (am Heizwasserauslass)	
		3.5.3 Expansionsbehälter	
		3.5.5 Sicherheitsventil	
	3.6	Anschluss des Kessels THERM 14, 17, 28 KDZ5.A und 17, 28 KDZ10.A an die Gebrauchwasserleitung	
	3.7	Anschluss des Kessels an die Gasleitung	
		3.7.1 Umbau auf andere Brennstoffe	
	3.8	/ /	
		3.8.1 Vorgehensweise beim Füllen des Heizsystems:	
		3.8.2 Nachfüllen von Wasser in das Heizsystem	
	2.0	3.8.3 Ablassen des Wassers aus dem Heizsystem	
	3.9	5	
	3.10		
		Anschluss des Kessels an das Stromnetz	
		3.12.1 Anschluss des Zimmerthermostats	
		3.12.2 Anschluss des Zimmerreglers mit OpenTherm-Kommunikation	38
	3.13	Installationsvarianten der Kessel	38
4.	Erg	änzende Informationen für den Kundendienst	39
	4.1	Gasarmatur SIEMENS VGU 86 - Einstellung	39
	4.2	Elektrisches Anschlussschema	40
5.		zeichnis über die Durchführung von Reparaturen sowie von Jahreskontrollen Während und nach der antiezeit	11
6		ALITÄTS- UND VOLLSTÄNDIGKEITSZERTIFIKAT DES PRODUKTS	
o.	QU	ALITATS- OND VOLLSTANDIGREITSZERTIFIRAT DES PRODURTS	4/

1. ALLGEMEINE INFORMATIONEN

1.1 Verwendung

Die Wand-Kondensationskessel THERM sind moderne Heizwasser-Gaskessel, die Erdgas verbrennen. Die Kessel wurden als Verbrauchsgeräte konstruiert, die die Kondensation von Wasserdampf im Verbrennungsprozess ausnutzen und sich durch eine hohe Effektivität, ein Minimum an Emissionen in die Atmosphäre sowie durch einen Mindestverbrauch an elektrischer Energie auszeichnen. Deren Betrieb ist rationell und belastet nicht so die Umwelt. Die Leistung des Kessels ist stufenlos im Bereich von ca. 16 - 100 % regulierbar und passt sich automatisch den aktuellen Wärmeverlusten des Objekts an.

Variantenweise können die Kessel THERM außer zur Beheizung zusätzlich auch zur Bereitung von Warmwasser (nachstehend nur WW genannt) im indirekt beheizten, externen bzw. eingebauten WW-Speicher, eventuell zur WW-Durchlauferhitzung benutzt werden.

Der Kessel ist für geschlossene Heizungssysteme bestimmt, die mit einem Expansionsbehälter, oder einem offenen Expansionsbehälter mit einer min. Höhe von 8 m über dem Kessel ausgestattet sind.

Im Fall, dass die Temperatur der Umgebung bei ausgeschaltetem Kessel unter den Gefrierpunkt abfällt, muss bei den Versionen KDZ5.A und KDZ10.A der WW-Speicher abgelassen werden.

1.2 Details über das Gerät

1.2.1 Beschreibung des Geräts

- es handelt sich um einen Wand-Kondensationskessel, der zur Beheizung von Objekten mit einem Temperaturverlust bis zu 14, 17 ggf. 28 kW bestimmt ist
- Möglichkeit zur Erhitzung von WW Durchlauferhitzung bzw. Erhitzung in einem nicht direkt beheiztem Speicher
- Betrieb mit Erd- oder Propangasgas
- voll automatischer Betrieb
- niedriger Stromverbrauch
- automatische, stufenlose der Leistungsmodulation
- einfache Bedienung des Kessels
- hoher Komfort
- eingebaute Äquithermregulierung

- Möglichkeit zur Steuerung durch ein übergeordnetes Zimmerthermostat bzw. einen intelligenten Zimmerregler
- hohe Betriebssicherheit
- die verwendeten Sicherheitselemente des Kessels verhindern ein Überhitzen des Kessels, die Entweichung von Verbrennungsgasen bzw. Gas
- eingebaute, energiesparende Umlaufpumpe
- Sicherheitsventil 3 bar
- Schutzfunktionen (Frostschutz, Pumpenschutz usw.)
- elektrische Zündung (Brennstoffeinsparung)
- eingebauter, automatischer Bypass

1.2.2 Ausführungsvarianten

THERM 14 KD.A, 17 KD.A, 28 KD.A

- geschlossene Brennkammer so genannte TURBO-Ausführung
- nur zur Beheizung bestimmte Variante
- die Luft zur Verbrennung wird aus der Außenumgebung angesaugt

THERM 14 KDZ.A, 17 KDZ.A, 28 KDZ.A

- geschlossene Brennkammer so genannte TURBO-Ausführung
- WW-Erhitzung im nicht direkt beheizten, externen Speicher
- die Luft zur Verbrennung wird aus der Außenumgebung angesaugt

THERM 28 KDC.A

- geschlossene Brennkammer so genannte TURBO-Ausführung
- WW-Durchlauferhitzung
- die Luft zur Verbrennung wird aus der Außenumgebung angesaugt

THERM 14 KDZ5.A, 17 KDZ5.A, 17 KDZ10.A, 28 KDZ5.A, 28 KDZ10.A

- geschlossene Brennkammer so genannte TURBO-Ausführung
- WW-Bereitung in einem indirekt beheizten, eingebauten Speicher aus Edelstahl mit einem Fassungsvermögen von 55 I oder 100 I
- die Luft zur Verbrennung wird aus der Außenumgebung angesaugt

1.2.3 Allgemeine Beschreibung

Die Kondensations-Gaskessel THERM bestehen aus dem Tragrahmen, an dem alle Betriebselemente des Kessels angebracht sind. Im oberen Abschnitt des Kessels ist der kompakte Kondensationskörper untergebracht, der die Brennkammer mit dem Brenner und einem Zweikammeraustauscher aus Edelstahl vereinigt. Die Hülle des Kondensationskörpers ist mit einem Thermoplastik-Außenmantel, der durch eine Innenwand aus Edelstahl verstärkt ist, wodurch wesentlich der Wärmedurchgang in die Umgebung verhindert wird, ausgestattet. **Die Wärmeaustauschflächen des Austauschers werden von kreisförmigen Rauchkammerrohrwänden gebildet, die vor Verschmutzungen aus dem Heizsystem geschützt werden müssen.** Aus diesem Grund muss das Heizsystem am Einlass des in den Kessel mit einem Filter bestückt werden. Der Sammler am Auslass des Heizwassers aus dem Gehäuse wird mit einem Entlüftungsventil und einem Temperaturfühler bestückt. Die abnehmbare Vorderwand des Gehäuses wird mit zwei Elektroden (einer Zünd- und einer Ionisationselektrode), einem Rohrbrenner und mit einer geformten Rohrleitung zur Zufuhr des Gas-Luft-Gemisches bestückt.

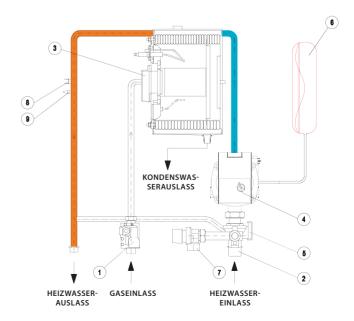
Das günstige Gas-Luft-Verhältnis besorgt der Mixer unter Mitwirkung einer speziellen Gasarmatur. Die enthält einen Gasdruckregler, zwei Solenoid-Blockierventile sowie eine Verhältnisregulierung der Gasaustrittsmenge inkl. der Elemente zur mechanischen Einstellung. Die Einstellung des Gleichlaufs der Verhältnisregulierung ist nur unter Anwendung einer speziellen Geräteausstattung möglich. Das ganze System arbeitet so, dass die zugeführte Gasmenge direkt entsprechend der vom Ventilator über den Mixer strömenden Luftmenge ist. Es kann also konstatiert werden, dass die Leistung des Kessels von der Menge der zur Verbrennung strömenden Luft abhängig ist.

Die Drehzahl des Ventilators wird deshalb stufenlos in einem breiten Bereich elektronisch gesteuert, was resultierend einen hohen Leistungsbereich des Kessels gewährleistet. Die Luftzufuhr in den Ventilator wird durch eine geformte Rohrleitung vom Anschlussmodul realisiert.

Die Zufuhr der Verbrennungsluft, inkl. des Verbrennungsgaszwangsabzugs wird außerhalb des Kessels in der Regel durch eine Koaxialrohrleitung gewährleistet, die horizontal über die Außenwand bzw. vertikal über die Dachkonstruktion in den Freiraum verläuft. Die Rohrleitung muss so installiert werden (angesichts der niedrigen Verbrennungsgastemperaturen), dass die Möglichkeit der Vereisung des Abzugendstückes verhindert wird. Die vertikale Rohrleitung muss deshalb unbedingt mit einem Dachschornstein beendet, die horizontale mit leichtem Gefälle vom Auslass zum Kessel geführt werden.

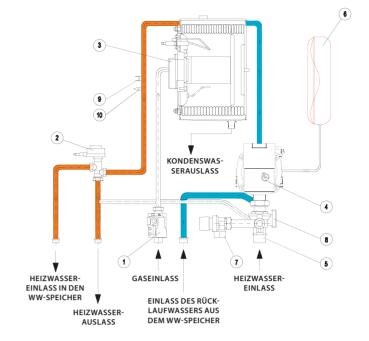
Die Ableitungen des Kondenswassers aus dem Kondensationskörper, der Rohrleitung des Verbrennungsgasabzugs und der Luftzufuhr werden mithilfe von Schläuchen, die in einen Geruchsverschluss abgeleitet, von wo aus das Kondenswasser außerhalb des Kessels abgeleitet wird.

Zur Gewährleistung des Wasserdurchflusses durch den Kessel wird der Rücklaufwassereinlass mit der energiesparenden Pumpe Wilo moderner Bauweise bestückt. Der ausreichende Durchfluss des Heizwassers wird durch einen Durchflussschalter, der im Mehrzwecksammler GRF 3 zusammen mit einem Bypass, einem Ventil zum Nachfüllen des Heizsystems aus dem Gebrauchwassereinlass (ggf. dem externen Anschluss) und mit einem Ablassventil eingebaut ist, überwacht. Am Sammler ist ebenfalls ein Sicherheitsventil zum Überdruckschutz des Kessels angeschlossen.

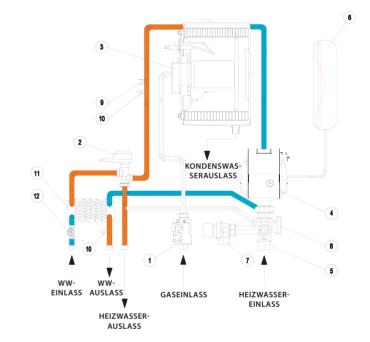

Die Kessel THERM 14, 17 a 28 KDZ.A sind vor dem Heizwasserauslass aus dem Kessel mit einem Motor-Drei-Wegeventil zur Verteilung der Funktionen der WW-Bereitung und der Aufheizung des Heizsystems bestückt.

Das Bedienungsfeld ist aus Vollkunststoff. Auf der Vorderseite sind Bedienungselemente angeordnet (siehe Kapitel "Bedienungsanleitung"). Ilnnen ist eine Einplatten-Automatik HDIMS 20-TH20 zur Steuerung der Kesseltätigkeiten, Steuerung der Sicherheit des Kessels sowie zur eigentlichen Regelung eingebaut.

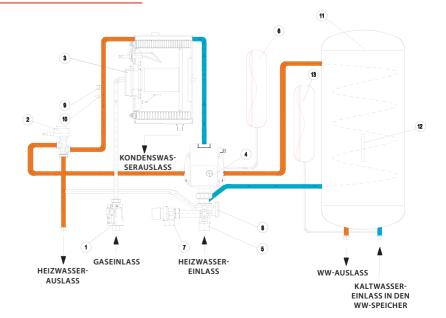
1.2.4 Vereinfachte Hydraulik- und Funktionsschemen (dienen als Unterlage für die Montage)


THERM 14 KD.A, 17 KD.A, 28 KD.A

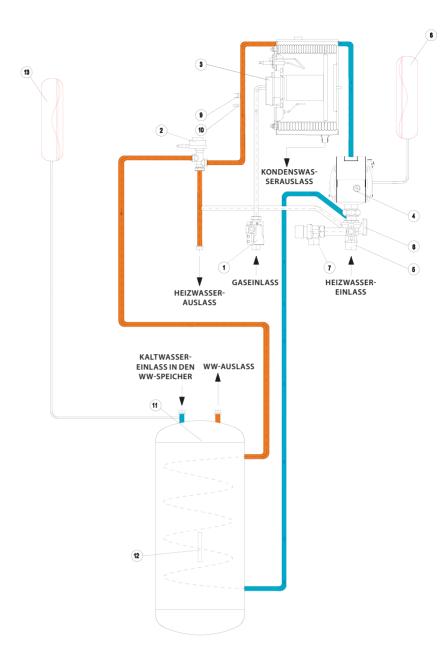
- 1 Gashahn Siemens
- 2 Hydraulik-Kombinationsarmatur
- 3 Kondensationskörper
- 4 Zirkulationspumpe
- 5 Durchflussschalter
- 6 Expansionsbehälter der Heizung
- 7 Sicherheitsventil
- 8 Havariethermostat
- 9 Temperaturfühler der Heizung


THERM 14 KDZ.A, 17 KDZ.A, 28 KDZ.A

- 1 Gashahn Siemens
- 2 Drei-Wege-Ventil
- 3 Kondensationskörper
- 4 Zirkulationspumpe
- 5 Hvdraulik-Kombinationsarmatur
- 6 Expansionsbehälter der Heizung
- 7 Sicherheitsventil
- 8 Durchflussschalter
- 9 Havariethermostat
- 10 Temperaturfühler der Heizung


THERM 28 KDC.A

- 1 Gashahn Siemens
- 2 Drei-Wege-Ventil
- 3 Kondensationskörper
- 4 Zirkulationspumpe
- 5 Hydraulik-Kombinationsarmatur
- 6 Expansionsbehälter der Heizung
- 7 Sicherheitsventil
- 8 Durchflussschalter
- 9 Havariethermostat
- 10 Temperaturfühler der Heizung
- 11 Plattentauscher
- 12 Durchlaufschalter der WW-Bereitung


THERM 14 KDZ5.A, 17 KDZ5.A, 28 KDZ5.A

- 1 Gashahn Siemens
- 2 Drei-Wege-Ventil
- 3 Kondensationskörper
- 4 Zirkulationspumpe
- 5 Hydraulik-Kombinationsarmatur
- 6 Expansionsbehälter der Heizung
- 7 Sicherheitsventil
- 8 Durchflussschalter
- 9 Havariethermostat
- 10 Temperaturfühler der Heizung
- 11 WW-Speicher
- 12 Sensor des WW-Speicherthermostats
- 13 WW-Expansionsbehälter

THERM 17 KDZ10.A, 28 KDZ10.A

- 1 Gashahn Siemens
- 2 Drei-Wege-Ventil
- 3 Kondensationskörper
- 4 Zirkulationspumpe
- 5 Hydraulik-Kombinationsarmatur
- 6 Expansionsbehälter der Heizung
- 7 Sicherheitsventil
- 8 Durchflussschalter
- 9 Havariethermostat
- 10 Temperaturfühler der Heizung
- 11 WW-Speicher
- 12 Sonde des WW-Speicherthermostats
- 13 WW-Expansionsbehälter

1.3 Betriebssicherheit

Die Kessel THERM sind mit sämtlichen Sicherheits-, Havarie- und Schutzelementen ausgestattet, welche einen völlig sicheren Betrieb der Kessel absichern. Falls es auch trotzdem, z.B. aufgrund eines nicht fachgerechten Eingriffs, Nichteinhaltung regelmäßiger Kontrollen sowie Revisionen des Kessels u.Ä. zu einem nicht standardgemäßen Zustand kommt, empfehlen wir sich wie folgt zu verhalten:

Bei Gasgeruch:

- Gashahn unter dem Kessel schließen
- Lüftung des Raums (Fenster, Türen) sicherstellen
- nicht mit elektrischen Schaltern manipulieren
- eventuelles offenes Feuer löschen
- sofort den Kundendienst herbeirufen (bis zur Kundendienstdurchsicht darf der Kessel nicht betrieben werden)

Bei Abgasgeruch:

- Kessel ausschalten
- Lüftung des Raums (Fenster, Türen) sicherstellen
- Kundendienst herbeirufen (bis zur Kundendienstdurchsicht darf der Kessel nicht betrieben werden)

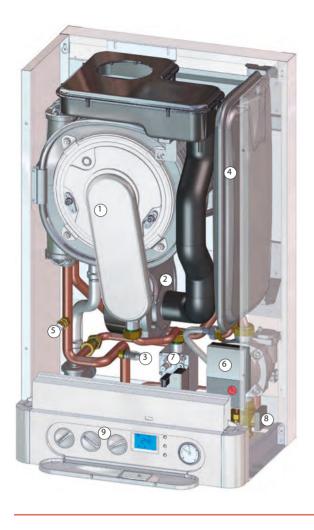
Bei Brand des Geräts:

- Gashahn unter dem Gerät schließen
- das gerät vom Stromnetz trennen
- Feuer mit einem Trocken- bzw. CO2 -Feuerlöscher löschen

1.4 Technische Parameter

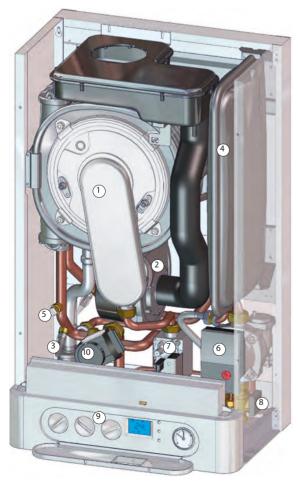
Technische Beschreibung	Maßein- heit	THERM 14 KD.A	THERM 14 KDZ.A	THERM 14 KDZ5.A
Brennstoff	-	Erdgas	Erdgas	Erdgas
Verbrauchsgerätkategorie	-	I _{2H}	I _{2H}	I _{2H}
Heiz-Nennleistungsbedarf	kW	13,8	13,8	13,8
Minimaler Heizleistungsbedarf	kW	2,5	2,5	2,5
Heiz-Nennleistung zur $\Delta t = 80/60$ °C	kW	13,4	13,4	13,4
Beheizung bei $\Delta t = 50/30 ^{\circ}\text{C}$	kW	14,6	14,6	14,6
Heiz-Nennleistung zur WW-Bereitung	kW	-	13,4	13,4
Mindest-Heizleistung $\Delta t = 50/30 ^{\circ}\text{C}$	kW	2,6	2,6	2,6
bei $\Delta t = 80/60 ^{\circ}\text{C}$	kW	2,4	2,4	2,4
Bohrung der Gasblende	mm	4,5	4,5	4,5
Gasüberdruck am Einlass des Geräts	mbar	20	20	20
Gasverbrauch	m³.h ⁻¹	0,26 – 1,46	0,26 – 1,46	0,26 – 1,46
Max. Überdruck des Heizsystems	bar	3	3	3
Min. Überdruck des Heizsystems	bar	0,8	0,8	0,8
Max. WW-Einlassdruck	bar	-	-	6
Min. WW-Einlassdruck	bar	-	-	0,5
Max. Austritttemperatur des Heizwassers	°C	80	80	80
Durchmesser des koaxialen Verbrennungsgasabzugs	mm	60/100	60/100	60/100
Durchschnittliche Verbrennungsgastemperatur	°C	50	50	50
Verbrennungsgas-Mengendurchsatz	g.s ⁻¹	1,6 – 10,7	1,6 – 10,7	1,6 – 10,7
Max. Geräuschpegel gemäß ČSN 01 16 03	dB	51	51	51
Effektivität des Kessels	%	98 – 106	98 – 106	98 – 106
NOx-Klasse des Kessels	-	5	5	5
Nennspeisespannung / Frequenz	V / Hz	230 / 50 ~	230 / 50 ~	230 / 50 ~
Stromanschlusswert	W	63,0 *	63,0 *	63,0 *
Nennstromstärke der Sicherung des Geräts	А	2	2	2
Schutzart des elektr. Abschnitts	-	IP 41 (D)	IP 41 (D)	IP 41 (D)
Milieu gemäß ČSN 33 20 00 – 3	-	grundlegendes AA5 / AB5	grundlegendes AA5 / AB5	grundlegendes AA5 / AB5
Fassungsvermögen des Expansomaten	I	6	6	6
Fülldruck des Expansomaten	bar	1	1	1
Fassungsvermögen des eingebauten WW-Speichers	I	-	-	55
Aufrechterhaltene Temperatur im WW- Speicher	°C	-	60	60
Fassungsvermögen des Expansomaten TV	I	-	-	2
Durchflussmenge des entnommenen WWs (D – gemäß ČSN EN 625)	l.min⁻¹	-	-	13,8
Maße des Kessels: Höhe/Breite/Tiefe	mm	725 / 430 / 300	725 / 430 / 300	725 / 800 / 390
Gewicht des Kessels	kg	32	33	55

Technische Beschreibu	ng	Maßein- heit	THERM 17 KD.A	THERM 17 KDZ.A	THERM 17 KDZ5.A	THERM 17 KDZ10.A
Brennstoff		-	Erdgas	Erdgas	Erdgas	Erdgas
Verbrauchsgerätkatego	rie	-	l _{2H} , l _{2E}	I _{2H} , I _{2E}	I _{2H} , I _{2E}	I _{2H} , I _{2E}
Heiz-Nennleistungsbed	arf	kW	16,0	16,0	16,0	16,0
Minimaler Heizleistungs	bedarf	kW	3,3	3,3	3,3	3,3
Heiz-Nennleistung zur	Δt = 80/60 °C	kW	15,7	15,7	15,7	15,7
Beheizung bei	Δt = 50/30 °C	kW	17,0	17,0	17,0	17,0
Heiz-Nennleistung zur V	WW-Bereitung	kW	-	15,7	15,7	15,7
Mindest-Heizleistung	Δt = 50/30 °C	kW	3,5	3,5	3,5	3,5
bei	Δt = 80/60 °C	kW	3,2	3,2	3,2	3,2
Bohrung der Gasblende	•	mm	4,5	4,5	4,5	4,5
Gasüberdruck am Einlas	ss des Geräts	mbar	20	20	20	20
Gasverbrauch		m³.h-1	0,35 – 1,70	0,35 – 1,70	0,35 – 1,70	0,35 – 1,70
Max. Überdruck des Hei	zsystems	bar	3	3	3	3
Min. Überdruck des Heiz	zsystems	bar	0,8	0,8	0,8	0,8
Max. WW-Einlassdruck		bar	-	-	6	6
Min. WW-Einlassdruck		bar	-	-	0,5	0,5
Max. Austritttemperatu	r des Heizwassers	°C	80	80	80	80
Durchmesser des koaxia Verbrennungsgasabzug		mm	60/100	60/100	60/100	60/100
Durchschnittliche Verbrennungsgastempe	eratur	°C	50	50	50	50
Verbrennungsgas-Meng	gendurchsatz	g.s ⁻¹	2,1 – 9,8	2,1 – 9,8	2,1 – 9,8	2,1 – 9,8
Max. Geräuschpegel ge	mäß ČSN 01 16 03	dB	52	52	52	52
Effektivität des Kessels		%	98 – 106	98 – 106	98 – 106	98 – 106
NOx-Klasse des Kessels		-	5	5	5	5
Art der Stromversorgun	g	-	~	~	~	~
Nennspeisespannung /	Frequenz	V / Hz	230 / 50	230 / 50	230 / 50	230 / 50
Zusätzliche elektr. Energ Nennleistungsaufnahm		W	63,7 *	63,7 *	63,7 *	63,7 *
Nennstromstärke der Sie Geräts	cherung des	А	2	2	2	2
Schutzart des elektr. Ab	schnitts	-	IP 41 (D)	IP 41 (D)	IP 41 (D)	IP 41 (D)
Milieu gemäß ČSN 33 20	000-3	-	grundlegendes AA5 / AB5	grundlegendes AA5 / AB5	grundlegendes AA5 / AB5	grundlegendes AA5 / AB5
Fassungsvermögen des	Expansomaten	I	6	6	6	6
Fülldruck des Expansom	naten	bar	1	1	1	1
Fassungsvermögen des WW-Speichers	eingebauten	I	-	-	55	100
Aufrechterhaltene Temp Speicher	peratur im WW-	°C	-	65	65	65
Fassungsvermögen des TV	Expansomaten	I	-	-	2	4
Durchflussmenge des ei WWs (D – gemäß ČSN El		l.min ⁻¹	-	-	14,2	15,6
Maße des Kessels: Höhe	e/Breite/Tiefe	mm	725 / 430 / 300	725 / 430 / 300	725 / 800 / 390	1575 / 500 / 535
Gewicht des Kessels		kg	38	39	61	103


^{*} Zusätzliche elektrische Energie bei teilweiser Belastung 52,3 W, Zusätzliche elektrische Energie bei Bereitschaftszustand 4,4 W.

Technische Beschreibung	Maß- einheit		ERM KD.A		ERM DZ.A		ERM DC.A
Brennstoff	-	Erdgas	Propangas	Erdgas	Propangas	Erdgas	Propangas
Verbrauchsgerätkategorie	-	l _{2H} , l _{2E}	I _{3P}	l _{2H} , l _{2E}	I _{3P}	I _{2H} , I _{2E}	I _{3P}
Heiz-Nennleistungsbedarf	kW	26,4	23,5	26,4	23,5	26,4	23,5
Minimaler Heizleistungsbedarf	kW	6,2	6,2	6,2	6,2	6,2	6,2
Heiz-Nennleistung zur $\Delta t = 80/60 ^{\circ}\text{C}$	kW	26,0	23,0	26,0	23,0	26,0	23,0
Beheizung bei $\Delta t = 50/30 ^{\circ}\text{C}$	kW	28,0	25,0	28,0	25,0	28,0	25,0
Heiz-Nennleistung zur WW-Bereitung	kW	-	-	26,0	23,0	26,0	23,0
Mindest-Heizleistung $\Delta t = 50/30 ^{\circ}\text{C}$	kW	6,6	6,6	6,6	6,6	6,6	6,6
bei $\Delta t = 80/60 ^{\circ}\text{C}$	kW	6,0	6,0	6,0	6,0	6,0	6,0
Bohrung der Gasblende	mm	6,8	5,0	6,8	5,0	6,8	5,0
Gasüberdruck am Einlass des Geräts	mbar	20	37	20	37	20	37
Gasverbrauch	m³.h-1	0,68 – 2,85	0,24 – 0,93	0,68 – 2,85	0,24 – 0,93	0,68 – 2,85	0,24 – 0,93
Max. Überdruck des Heizsystems	bar	3	3	3	3	3	3
Min. Überdruck des Heizsystems	bar	0,8	0,8	0,8	0,8	0,8	0,8
Max. WW-Einlassdruck	bar	-	-	-	-	6	6
Min. WW-Einlassdruck	bar	-	-	-	-	0,5	0,5
Max. Austritttemperatur des Heizwasse	°C °C	80	80	80	80	80	80
Durchmesser des koaxialen Verbrennungsgasabzugs	mm	60/100	60/100	60/100	60/100	60/100	60/100
Durchschnittliche Verbrennungsgastemperatur	°C	50	50	50	50	50	50
Verbrennungsgas-Mengendurchsatz	g.s ⁻¹	3,1 – 14,7	3,4 – 17,0	3,1 – 14,7	3,4 – 17,0	3,1 – 14,7	3,4 – 17,0
Max. Geräuschpegel gemäß ČSN 01 16 0	dB	52	52	52	52	52	52
Effektivität des Kessels	%	98 – 106	98 – 106	98 – 106	98 – 106	98 – 106	98 – 106
NOx-Klasse des Kessels	-	5	5	5	5	5	5
Art der Stromversorgung	-	~	~	~	~	~	~
Nennspeisespannung / Frequenz	V / Hz	230 / 50	230 / 50	230 / 50	230 / 50	230 / 50	230 / 50
Zusätzliche elektr. Energie bei Wärme- Nennleistungsaufnahme	W	66,1 *	66,1 *	66,1 *	66,1 *	66,1 *	66,1 *
Nennstromstärke der Sicherung des Geräts	A	2	2	2	2	2	2
Schutzart des elektr. Abschnitts	-	IP 41 (D)	IP 41 (D)	IP 41 (D)	IP 41 (D)	IP 41 (D)	IP 41 (D)
Milieu gemäß ČSN 33 20 00 – 3	-		ndes AA5 / B5		ndes AA5 / B5		ndes AA5 / B5
Fassungsvermögen des Expansomaten	I	7	7	7	7	7	7
Fülldruck des Expansomaten	bar	1	1	1	1	1	1
Warmwasserdurchfluss bei $\Delta t = 30$ °C	l.min ⁻¹	-	-	-	-	12	11
Maße des Kessels: Höhe/Breite/Tiefe	mm	800 / 4	30 / 325	800 / 4	30 / 325	800 / 4	30 / 325
Gewicht des Kessels	kg	45	45	46	46	47	47

Technische Beschreibung		Maß- einheit		ERM DZ5.A	THE 28 KD	ERM Z10.A
Brennstoff		-	Erdgas	Propangas	Erdgas	Propangas
Verbrauchsgerätkategorie		-	I _{2H} , I _{2E}	I _{3P}	I _{2H} , I _{2E}	I _{3P}
Heiz-Nennleistungsbedarf		kW	26,4	23,5	26,4	23,5
Minimaler Heizleistungsber	darf	kW	6,2	6,2	6,2	6,2
Heiz-Nennleistung zur Δt	:= 80/60 °C	kW	26,0	23,0	26,0	23,0
Debeiser ubei	:= 50/30 °C	kW	28,0	25,0	28,0	25,0
Heiz-Nennleistung zur WW	'-Bereitung	kW	26,0	23,0	26,0	23,0
Mindest-Heizleistung Δt	:= 50/30 °C	kW	6,6	6,6	6,6	6,6
hoi	= 80/60 °C	kW	6,0	6,0	6,0	6,0
Bohrung der Gasblende		mm	6,8	5,0	6,8	5,0
Gasüberdruck am Einlass de	es Geräts	mbar	20	37	20	37
Gasverbrauch		m³.h-1	0,68 – 2,85	0,24 – 0,93	0,68 – 2,85	0,24 – 0,93
Max. Überdruck des Heizsy	stems	bar	3	3	3	3
Min. Überdruck des Heizsys		bar	0,8	0,8	0,8	0,8
Max. WW-Einlassdruck		bar	6	6	6	6
Min. WW-Einlassdruck		bar	0,5	0,5	0,5	0,5
Max. Austritttemperatur de	es Heizwassers	°C	80	80	80	80
Durchmesser des koaxialen Verbrennungsgasabzugs		mm	60/100	60/100	60/100	60/100
Durchschnittliche Verbrennungsgastemperat	ur	°C	50	50	50	50
Verbrennungsgas-Mengen	durchsatz	g.s ⁻¹	3,1 – 14,7	3,4 – 17,0	3,1 – 14,7	3,4 – 17,0
Max. Geräuschpegel gemä	ß ČSN 01 16 03	dB	52	52	52	52
Effektivität des Kessels		%	98 – 106	98 – 106	98 – 106	98 – 106
NOx-Klasse des Kessels		-	5	5	5	5
Art der Stromversorgung		-	~	~	~	~
Nennspeisespannung / Fre	quenz	V / Hz	230 / 50	230 / 50	230 / 50	230 / 50
Zusätzliche elektr. Energie Nennleistungsaufnahme	bei Wärme-	W	66,1 *	66,1 *	66,1 *	66,1 *
Nennstromstärke der Siche Geräts	erung des	А	2	2	2	2
Schutzart des elektr. Absch	nitts	-	IP 41 (D)	IP 41 (D)	IP 41 (D)	IP 41 (D)
Milieu gemäß ČSN 33 20 00) – 3	-	grundlegend	les AA5 / AB5	grundlegend	les AA5 / AB5
Fassungsvermögen des Exp	oansomaten	I	7	7	7	7
Fülldruck des Expansomate	en	bar	1	1	1	1
Fassungsvermögen des ein WW-Speichers	gebauten	I	55	55	100	100
Aufrechterhaltene Tempera Speicher	atur im WW-	°C	60	60	60	60
Fassungsvermögen des Exp TV	oansomaten	I	2	2	4	4
Durchflussmenge des entn WWs (D – gemäß ČSN EN 6		l.min ⁻¹	16,3	14,9	18,6	17,2
Maße des Kessels: Höhe/Br	reite/Tiefe	mm	800 / 80	00 / 390	1575 / 5	00 / 535
Gewicht des Kessels		kg	67	67	102	102


^{*} Zusätzliche elektrische Energie bei teilweiser Belastung 54,6 W, Zusätzliche elektrische Energie bei Bereitschaftszustand 4,4 W.

1.5 Zusammensetzung der Kessel

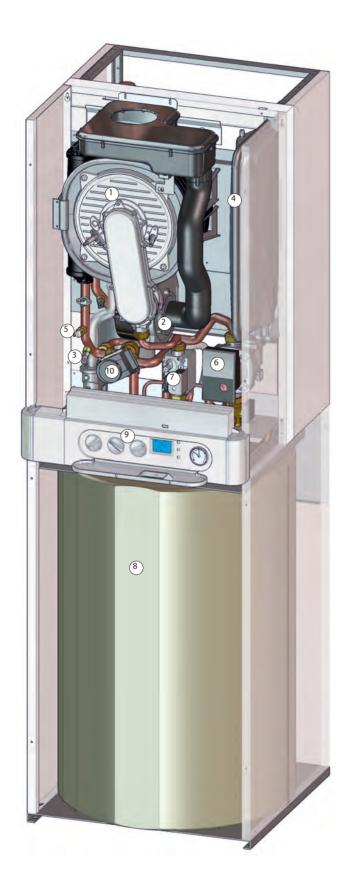
THERM 14 KD.A, 17 KD.A, 28 KD.A

- 1 Kondensationskammer
- 2 Ventilator
- 3 Temperaturfühler der Heizung
- 4 Expansionsbehälter der Heizung
- 5 Druckschalter
- 6 Energiesparende Pumpe
- 7 Gashahn
- 8 Durchflussschalter
- 9. Bedienfeld

THERM 14 KDZ.A, 17 KDZ.A, 28 KDZ.A

- 1 Kondensationskammer
- 2 Ventilator
- 3 Temperaturfühler der Heizung
- 4 Expansionsbehälter der Heizung
- 5 Druckschalter
- 6 Energiesparende Pumpe
- 7 Gashahn
- 8 Durchflussschalter
- 9. Bedienfeld
- 10 Drei-Wege-Ventil

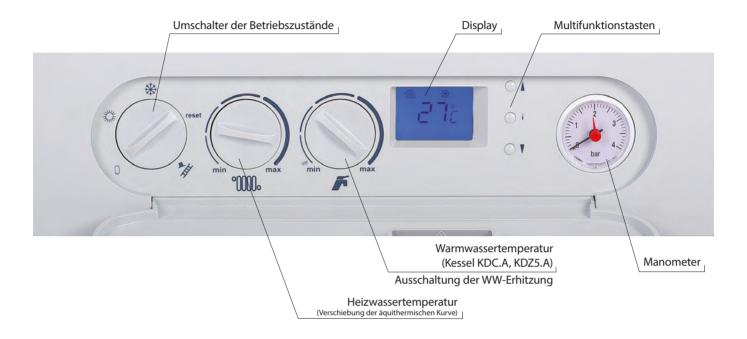
THERM 28 KDC.A


- 1 Kondensationskammer
- 2 Ventilator
- 3 Temperaturfühler der Heizung
- 4 Expansionsbehälter der Heizung
- 5 Druckschalter
- 6 Energiesparende Pumpe
- 7 Gashahn
- 8 Durchflussschalter
- 9. Bedienfeld
- 10 Drei-Wege-Ventil
- 11 Plattentauscher

THERM 14 KDZ5.A, 17 KDZ5.A, 28 KDZ5.A

- 1 Kondensationskammer
- 2 Ventilator
- 3 Temperaturfühler der Heizung
- 4 Expansionsbehälter der Heizung
- 5 Druckschalter
- 6 Energiesparende Pumpe
- 7 Gashahn
- 8 WW-Speicher
- 9. Bedienfeld
- 10 Drei-Wege-Ventil

THERM 17 KDZ10.A, 28 KDZ10.A


- 1 Kondensationskammer
- 2 Ventilator
- 3 Temperaturfühler der Heizung
- 4 Expansionsbehälter der Heizung
- 5 Druckschalter
- 6 Energiesparende Pumpe
- 7 Gashahn
- 8 WW-Speicher
- 9. Bedienfeld
- 10 Drei-Wege-Ventil

2. BEDIENUNGSANLEITUNG

2.1 Bedienung und Signalisierung

2.1.1 Bedienfeld des Kessels

Die Bedienungselemente des Kessels sind unter der stirnseitigen Kunststoffabdeckung verborgen. Die Abdeckung wird durch einen leichten Zug im oberen Bereich der Öffnung für das Display geöffnet.

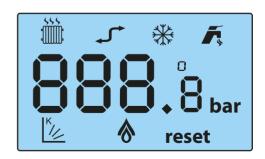
Umschalter der Betriebszustände - hat nachfolgende Positionen:

- Ausschalten des Kessels in Betrieb verbleiben die Schutzfunktionen des Kessels (bei an das elektrische Netz angeschlossenen Kessel und bei geöffneter Gaszufuhr). Bei der Wahl dieses Zustands wird auf dem Display des Kessels OFF angezeigt, die Heizung, die Warmwasserbereitung ist ausgeschaltet und gleichzeitig ist auch die Displaybeleuchtung abgeschaltet.
- **Sommermodus** (nur Warmwasseraufbereitung eingeschaltet, Heizung ausgeschaltet)
- **Wintermodus** (Heizung sowie Warmwasserbereitung eingeschaltet)
- reset Freigabe des Fehlerzustands des Kessels
- **Servicemodus** (s.g. Funktion "Schornsteinfeger" die Leistung des Kessels kann stufenlos mittels des Drehreglers reguliert werden linke Position = minimale Leistung und Temperatur, rechte Position = maximale Leistung und Temperatur). Dieser Modus dient nur für Servicetätigkeiten und Messungen (Emissionen, Abgastemperaturen usw.)
- **Einstellung der Heizungstemperatur** Drehschalter zur Anwendereinstellung der Wasseraustritttemperatur im Bereich von 30 80 °C. Im Fall der gewählten Äquithermregulierung wird mit dem Schalter die Verschiebung der Heizkurve (im Bereich von ± 15 °C von der Äquithermkurve) eingestellt.

5

Einstellung der WW-Temperatur – Drehschalter zur Anwendereinstellung der gewünschten WW-Temperatur im Bereich von 35 - 60 °C (die empfohlene Einstellung ist 60 °C). Angewendet bei den Kesseln THERM 14, 17, 28 KDZ5.A und 28 KDC.A, ggf. THERM 14, 17, 28 KDZ.A zur WW-Temperaturabtastung in einem externen Speicher durch einen NTC-Fühler. Die WW-Temperatur kann mithilfe des Informationsmenüs abgebildet werden.

Ausschaltung der WW-Erhitzung – Durch Einstellung des Drehstellers zur Anwendereinstellung der Warmwasseraustrittstemperatur in die linke Endposition (weniger als 10° der Bahn) kann die Warmwasserdauererhitzung außer Betrieb gesetzt werden.


Multifunktiontasten – sie sind für die Diagnose und Einstellung von Parametern des Kessels ausschließlich durch den Servicetechniker bzw. zum Umschalten von Informationsangaben bestimmt (siehe weiter)

Manometer – zeigt den gemessenen Wasserdruck im Heizsystem an

2.1.2 LCD Display

Anzeige der eingestellten Temperatur:

Nach dem Drehen des Schalters zur Einstellung der Temperatur des Heizsystems oder der WW-Bereitung blinken das entsprechende Symbol der Betriebsart und die numerische Anzeige der Temperatur auf dem LCD-Display auf. In diesem Fall wird der Wert der soeben eingestellten Temperatur angezeigt. Nach Beendigung der Einstellung dauert die Anzeige der eingestellten Temperatur noch über die Zeit von ca. 5 Sekunden an. Durch die nachfolgende Daueranzeige der digitalen Angabe und Symbols wird wieder die reelle Temperatur des betreffenden Modus angezeigt.

Beschreibung der am Display abgebildeten Symbole:

SYMBOL	BEZEICHNUNG	BEDEUTUNG
88.8	Abbildungsfeld	Abbildung der Temperaturen, Störungszustände und Kundendienstwerte
5	Hahn	Ständiges Leuchten - der Kessel befindet sich im Modus der WW-Erhitzung Blinkt - Abbildung der WW-Temperatur bzw. der gewünschten WW-Temperatur
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Radiator	Ständiges Leuchten - der Kessel befindet sich im Heizungsmodus Blinkt - Abbildung der Heizungstemperatur bzw. der gewünschten Heizungstemperatur
♦	Flamme	Ständiges Leuchten - der Brenner brennt Blinkt - der Brenner brennt während des Kundendienstmodus
K//_	Kurve ("K"-Faktor)	Ständiges Leuchten – der Äquithermmodus der Heizung wurde gewählt Blinkt - Abbildung des "K"-Faktors bzw. zusammen mit °C Außentemperatur
***	Frostflocke	Der Kessel befindet sich im "WINTER"-Modus
1	Kommunikation	Ständiges Leuchten – die OpenTherm+-Kommunikation ist aktiv Blinkt – die Kommunikation mit der Kaskadenschnittstelle ist aktiv

2.1.3 Informationsmenü

Die Tasten und werden zum Zugriff und Nachblättern im Informationsmenü in beiden Richtungen in nachstehender Reihenfolge angewendet:

PARAMETER	ABBILDUNG AM DISPLAY				
Gewünschte Heizungstemperatur	- 35 - ° C				
Heizungstemperatur	- 35 [□] C				
Gewünschte WW-Temperatur (2)	- 35-0 C				
WW-Temperatur (2)	35 ° C				
Außentemperatur (1)	- K - 15 ° C				
Äquithermkurve ("K"-Faktor)	- <u> </u>				
Temperatur des Rücklaufwassers aus dem System	<i>35</i> ° C				
Ventilatorgeschwindigkeit vierstelliger Drehzahlwert pro Minute					
Rückkehr zur normalen Abbildung					

Fallsdie Taste doder währen deines Zeitraums von 10Sekunden nicht gedrückt wird, oder bei einem gleichzeitigen Druckder Tasten das Informationsmenü beendet.

- (1) die Anzeige der Außentemperatur steht nur beim Anschluss des entsprechenden Sensors und der Auswahl der äquithermischen Regelung zur Verfügung.
- (2) bei Auswahl der WW-Bereitung im externen Speicher ist die Anzeige "--", (beim Nachwärmen des eingebauten Speichers bzw. Solarakkumulators wird ein Zahlenwert angezeigt siehe nachstehend)

2.1.4 Fehlermeldungen

Eventuelle Störungen oder andere Anomalien werden zur Betonung durch ein Blinken der Beleuchtung des LCD-Paneels sowie des angezeigten Störungscodes signalisiert. An der ersten Stelle des Displays wird das Symbol "E" abgebildet, an den nächsten Stellen dann der Störungscode mit der Bedeutung laut Tabelle.

Anzeige des Störungscodes auf dem LCD-Display und dessen Bedeutung:

STÖRUNGSCODE	BEDEUTUNG
E01 *	Blockierung der Funktionen nach Nichtanzündung der Brennerflamme
E02	Unzureichender Heizwasserdruck bzwdurchfluss
E04	Defekt an der Temperatursonde der Heizung (Unterbrechung bzw. Kurzschluss)
E05	Defekt an der WW-Temperatursonde
E06 *	Blockierung der Funktion nach Überhitzung des Kessels (Havariethermostat)
E07	Defekt am Außentemperaturgeber
E08	Störung am Ventilator (rückgekoppeltes Drehzahlsignal)
E09	Störung am Ventilator (Drehzahl außerhalb des Regulierbereichs)
E10	Störung am Ventilator (dreht sich bei STOPP)
E12	Störung des unzureichenden Heizwasserdurchlaufs nach 4-Pumpenzyklen
E16 *	Hohe Verbrennungsgastemperatur im Kondensationskörper

^{*} Der Kessel ist blockiert. Zur Wiederinbetriebnahme muss ein manueller Test mit dem Betriebsumschalter vorgenommen werden.

Ein eventueller Störungscode wird in den Speicher des Prozessors eingetragen, wo er auch im Fall des Ausfalls der Stromversorgung gespeichert bleibt. Der Kundendiensttechniker kann also jederzeit in den Speicher Einsicht nehmen und die Historie der Störungszustände feststellen.

2.2 Ingangsetzung und Ausschaltung des Kessels

2.2.1 Inbetriebnahme

Der Kessel kann nur durch einen Servicetechniker mit einer Berechtigung des Herstellers in Betrieb genommen werden! Ein Verzeichnis der Servicetechniker ist dem Produkt beigelegt.

Arbeiten, die vor und während der Ingangsetzung des Kessels durchgeführt werden müssen.

Vor der ersten Anzündung des Kessels ist erforderlich nachstehende Maßnahmen zu treffen:

- kontrollieren, ob das Heizsystem mit Wasser gefüllt und der Kessel richtig entlüftet ist
- sich überzeugen, ob alle Ventile unter dem Kessel und am Heizsystem geöffnet sind
- den Gashahn öffnen und mit Hilfe eines Gasleckdetektors oder einer schaumbildenden Lösung die Dichtigkeit der Gasversorgung im Kessel überprüfen

Die Vorgehensweise bei der ersten Anzündung des Kessels ist folgende:

- den Drehknopf der Heizwasseraustrittstemperatur des Kessels auf das Maximum einstellen
- die Netzanschlussleitung in die Steckdose stecken und den Kessel mit dem Betriebsmodi-Umschalter einschalten
- durch eine kurzzeitige Drehung des Betriebsmodi-Umschalters in die rechte Endposition zündet der Kessel automatisch (bei einer entlüfteten Gaszufuhr)
- die Kontrolle der richtigen Funktion aller Thermostaten und Bedienungselemente durchführen
- die Kontrolle aller Funktionen des Kessels durchführen
- die Einstellung des Verbrennungsvorgangs des Kessels durchführen, ggf. die Einstellungen nach den Bedürfnissen des zu beheizenden Objekts anpassen
- die Schulung des Anwenders durchführen

Die Einstellung des Leistungsbereichs des Kessels und der sonstigen Parameter muss in Übereinstimmung mit den technischen Angaben sein. Jedwede Überlastung und falsche Benutzung des Kessels kann die Entwertung dessen Komponenten verursachen. Auf derart beschädigte Komponenten kann keine Gewährleistung geltend gemacht werden!

Der Kessel darf nicht mit einem außer Betrieb genommenen Havariethermostat bzw. Sicherheitselement oder mit einer ersetzten, anderen Einrichtung, als der Hersteller festgelegt hat, betrieben werden! Im umgekehrten Fall kann es zu einem Havarie- sowie anderweitig gefährlichen Zustand kommen!

Der Servicetechniker ist mit Berechtigung vom Hersteller verpflichtet, beim Starten eine nachweisbare Bekanntmachung des Benutzers mit dem Betrieb des Kessels, seiner einzelnen Teile, den Sicherheitselementen und der Bedienungsweise durchzuführen, den Garantieschein auszufüllen und dem Benutzer diese Bedienungsanleitung zu übergeben.

Der Benutzer ist verpflichtet, auf die richtige Verwendung des Kessels in Übereinstimmung mit dieser Anleitung zu achten, was eine der Bedingungen für die Garantieanerkennung ist. Des Weiteren ist streng verboten auf irgendeine Art und Weise in die gesicherten Bauteile im Kessel einzugreifen!

2.2.2 Außerbetriebnahme des Kessels

Der Kessel kann auf kürzere Zeit mit dem Betriebsmodiumschalter, ggf. mit dem Schalter am Raumthermostat ausschaltet werden.

Für eine langfristige Abschaltung des Kessels außerhalb der Heizsaison (z.B. im Verlauf des Sommerurlaubs) ist es günstig, den Gashahn zu schließen. Lassen Sie den Kessel jedoch am elektrischen Netz angeschlossen. Nur in diesem Fall sind die Schutzfunktionen des Kessels aktiv.

Eine eventuelle vollständige Abstellung des Kessels (Schließen der Gaszufuhr, Abklemmen vom elektrischen Netz) muss mit Rücksicht auf die umliegende Umgebungstemperatur in der gegebene Jahreszeit erfolgen! Es besteht die Gefahr des Einfrierens des Heizungssystems bzw. des WW-Speichers und somit eine Beschädigung des Kessels, ggf. anderer Elemente des Heizungssystems.

2.3 Regulierung

Der Kessel ist mit inneren Regulierungselementen auf einem hohen Niveau schon in der Grundausstattung ausgestattet. Standard ist eine integrierte Äguithermregulierung. Die Erwärmung des Heizsystems kann in mehreren Weisen gesteuert werden: Regulierung nach der Raumtemperatur im ausgewählten Referenzraum, Äguithermregulierung des Heizwassers, kombinierte Regulierung usw.

2.3.1 Betrieb des Kessels ohne Raumthermostat bzw. Regler

Der Kessel hält bei diesem Modus die gewählte Temperatur des Heizwassers ein. Weder das Raumthermostat noch der Regler sind angeschlossen, dessen Anschlussklemmen für dessen Anschluss müssen miteinander verbunden sein (ist vom Herstellerwerk eingestellt).

Stellen Sie in diesem Modus die Temperatur des Heizwassers direkt am Bedienungsfeld des Kessels mit Hilfe des mittleren Drehschalters ein.

Den Betrieb des eigenständigen Kessels (ohne Wahl einer äquithermischen Regulierung) empfehlen wir wenigstens durch ein einfaches Raumthermostat zu steuern. Die Raumtemperatur ist zeitlich konstant und erhält den Kessel in längeren Betriebsmodi. Es ist geeignet die eingebaute Äquithermregulierung entweder separat oder ergänzt durch einen

2.3.2 Betrieb des Kessels mit einem Raumthermostat

Bei dieser Regulierungsweise hält der Kessel die gewählte Temperatur des Heizwassers. Das Raumthermostat wird statt an der Anschlussklemme X9 an der Steuerautomatik des Kessels angeschlossen. Der Betrieb des Kessels wird anschließend nach der Innentemperatur des Raums gesteuert, in dem das Raumthermostat (so genannter Referenzraum) platziert ist. Im Referenzraum ist es unerwünscht die Radiatoren mit Thermostatventilen zu bestücken!

Zur Steuerung nach der Raumtemperatur liefert und empfiehlt Thermona eine ganze Reihe an Zimmerthermostaten: z.B. PT 22, Honeywell CM 707, CM 727 (drahtlose Version) u.a.

Die angeführten Anbauregulierungen sind nicht, ausgenommen Sonderangebote, Gegenstand der Lieferung des Kessels!

Beschreibung der Funktionen des Kessels im angeführten Modus:

Die Arbeitsphase des Kessels beginnt mit dem Schalten des Raumthermostats (das Thermostat wertete eine niedrigere Temperatur als die gewünschte aus) in dem Moment, wo der Modischalter in der Position Wintermodus ist. Das Relais des Drei-Wege-Ventils ist ausgeschaltet (bei Kesseln mit WW-Bereitung im Speicher), der Betrieb der Umlaufpumpe, der Zündautomatik sowie des Ventilators werden aktiviert. Das Anzünden des Kessels erfolgt auf die eingestellte Startleistung. Diese wird über die Zeit von 2 Sekunden nach dem Anzünden des Kessels aufrechterhalten. Danach wird die Leistung auf das Minimum mit einem langsamen linearen Anlauf (ca. 50 s) zum Modulationspunkt, der von der Kundendiensteinstellung der Höchstleistung der Heizung gegeben ist, reduziert. Die Regulierung der Kesselleistung in dieser Phase entspricht dem Typ PID (proportional/integrierend/differenzierend) mit der Aufrechterhaltung der mit dem Drehknopf am Bedienfeld eingestellten Temperatur (im Bereich von 30 – 80 °C). Über die ganze Zeit der Aufheizung erfolgt die Kontrolle der Regulierungslimits der Austrittstemperatur. Bei der Aufheizung des Heizwasser-Austrittstemperatur um 3° C über dem eingestellten Wert (innerhalb von 30 Sekunden ab der Zündung wird dieser Wert auf 10 °C erhöht). In dieser Phase unterbricht der Kessel den Brennvorgang unter Beibehaltung des Betriebs der Umlaufpumpe und startet ein Zeitlimit zur abermaligen Zündung (Kundendiensteinstellung im Bereich von 0 – 10 Minuten). So wird der Kessel zu einer hoch anpassbaren Wärmequelle hinsichtlich der großen Vielfältigkeit der anschließend regulierbaren Beheizungssysteme (z.B. Anwendung der Zonenregulierung, Thermostatventile usw.).

Nach der Ausschaltung des Raumthermostats bzw. nach der Umschaltung des Wahlschalters in den "SOMMER"-Modus wird das Brennen der Brenner gestoppt und die Pumpe bleibt weiterhin über die eingestellte Dauer der Nachlauffunktion der Pumpe eingeschaltet (Kundendiensteinstellung im Bereich von 0 – 10 Minuten) Diese Funktion wird bei der Wärmeabnahme aus dem Kondensationskörper und zur Verbesserung der Temperaturverteilung der Heizkörper beim Gebrauch von Raumreglern mit PI-Bindung mit kurzen Arbeitszyklen genutzt.

Im Falle der Installation eines Zimmerthermostats bzw. eines Regulators im Referenzraum muss min. einer der Heizkörper ohne Thermostatventil belassen werden. Zur Erhöhung des Wärmekomforts empfehlen wir an den Heizkörpern im Referenzraum überhaupt keine Thermostatventile zu installieren.

2.3.3 Betrieb des Kessels unter Ausnutzung der eingebauten Äguithermregulierung

Dieser Modus ist im Kessel standardmäßig zugänglich, aber nicht aktiviert! Die Aktivierung und Ersteinstellung der Regulierung nimmt auf Wunsch des Benutzers ein autorisierte Kundendiensttechniker vor.

Bei der Äquithermregulierung ändert der Kessel die Temperatur des Heizwassers automatisch nach den Änderungen der Außentemperatur.

Diese Regulierungsweise kann nur mit einem angeschlossenen Außentemperaturfühler genutzt werden. Der Außentemperaturfühler wird an der kältesten Wand des Objekts platziert (auf der Nord- bzw. Nordwestseite) ungefähr 3 m über dem Erdboden platziert. Der Geber darf durch keinen fremden Wärmeeinfluss wie z.B. offenstehende Fenster, Sonnenschein, Lüftungsschächte u.Ä. beeinflusst werden.

Beschreibung der Funktionen des Kessels in diesem Modus:

Die Arbeitsphasen des Kessels sind mit dem vorhergegangenen Modus identisch, mit Ausnahme, dass die Temperatur des Heizsystems automatisch nach der Außentemperatur (festgestellt durch den Sensor) eingestellt wird. Die Berechnung der gewünschten Temperatur des Heizsystems entspricht der Funktion der Außentemperatur und der Funktion des "K"-Faktors (Neigung der Äquithermkurve), den der Kundendiensttechniker unter Berücksichtigung der Lokalität und des Charakters des Heizsystems einstellt. Durch den Temperaturdrehregler des Heizwassers an dem Bedienfeld stellt sich der Benutzer den gewünschten Wärmekomfort ein (Korrektur der Verschiebung der Äquithermkurve im Bereich von \pm 15 °C des Heizwassers). Die Äquithermkurve wird für Standardheizsysteme mit Radiatoren modifiziert.

Im Fall eines Defekts des Außentemperaturgebers wird dessen Status durch die Störung E07 signalisiert und der Kessel fährt im Betrieb mit der Temperatur des Heizsystems nach der Einstellung wie im vorangehenden Modus (ohne Äquithermregulierung) fort.

Vorgehensweise zur Einstellung:

Bei der Einstellung der Äquithermregelung muss **die Neigung** und **die Verschiebung** der Äquithermkurve unterschieden werden. Bei Einstellung der Neigung der Äquithermkurve gilt nachfolgende Regel: bei schlechten wärmeisolierenden Eigenschaften des Objekts ändern wir der Neigungsparameter der Kurve in Richtung zu größeren Werten (wir heben die Kurve an), bei einer guten Wärmeisolierung können wir den Parameter verringern (wir senken die Kurve im Gegensatz mehr ab).

Einstellung der Kurvenneigung nimmt ein autorisierter Kundendiensttechniker im Kundendienstmenü der Steuerautomatik des Kessels vor!

Bei einer aktivierten äquithermischen Regelung ändert sich die Bedeutung der Funktion des mittleren Drehreglers am Bedienfeld des Kessels. Mit dem gekennzeichneten Drehregler wird in diesem Fall die Verschiebung der Heizkurve eingestellt (im Umfang ±15 °C der vom Servicetechniker eingestellten Äquithermkurve).

Aus dem oben Aufgeführten folgt, dass durch den Drehregler für die Einstellung der Heizungstemperatur am Bedienfeld in diesem Kesselmodus indirekt die gewünschte Temperatur des zu heizenden Raumes eingestellt wird. Anfänglich (werksseitig) ist die Äquithermkurve auf "K" = 1,6 eingestellt. Die Ausgangsanwendereinstellung des Drehschalters der Heizungstemperatur erfolgt in die Mitte der Einstellungsbahn (Zeiger nach oben, was einer Verschiebung der Kurve um 0 °C entspricht). Nach der Kontrolle der Temperatur des zu beheizenden Raums (ca. in 24 Stunden) kann die präzisierende Einstellung nach Ihren Wünschen an die Wärmebehaglichkeit erfolgen. Durch den Einfluss der Äquithermregulierung werden auch weiterhin Änderungen der Außentemperatur kompensiert und das Temperaturniveau des zu beheizenden Raums wird automatisch auf dem konstanten Wert aufrechterhalten.

Durch die Nutzung dieses Modus der Kesselregulierung erzielen wir eine weitere Verringerung der Betriebskosten bei einer Verbesserung des Wärmekomforts (kontinuierliche Erwärmung der Heizkörper). Nicht zuletzt schätzen wir diese Möglichkeit als Vorregulierung des primären Heizkreislaufes bei der Verwendung der Zonenregulierung (durch Mischventile) usw.

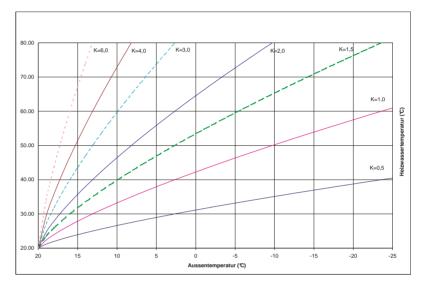
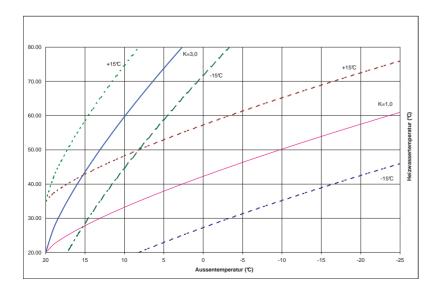


Diagramm der Verläufe der Äquithermkurven (Nullverschiebung)


Die berechnete Temperatur des Heizwassers ist auf maximal 80 °C begrenzt. Falls sich die berechnete Temperatur im Bereich von 20 ÷ 35 °C bewegt, wird die gewünschte Temperatur auf die minimale Kesseltemperatur, d.h. 30 °C begrenzt und es wird die Funktion des periodischen Starten des Kessels in einem festen Intervall von 15 Minuten und einer festen Laufzeit auf 35 °C nach der Beziehung gestartet:

 T_{on} (min) = 15 – T_{off} ; davon T_{off} (min) = 35 – berechnete äquithermische Temperatur

Falls die berechnete Äquithermtemperatur ≤ 20 °C ist, bleibt der Kessel ausgeschalten.

Anmerkung:

T_{on} = Einschaltintervall des Kessels T_{off} = Restintervall der Kesselausschaltung bis zu den festen 15 Minuten

Verlaufsbeispiel der gewählten Kurven bei der Korrektur der Verschiebung (mittlerer Drehregler)

2.3.4 Betrieb des Kessels mit übergeordneten Äquithermregler

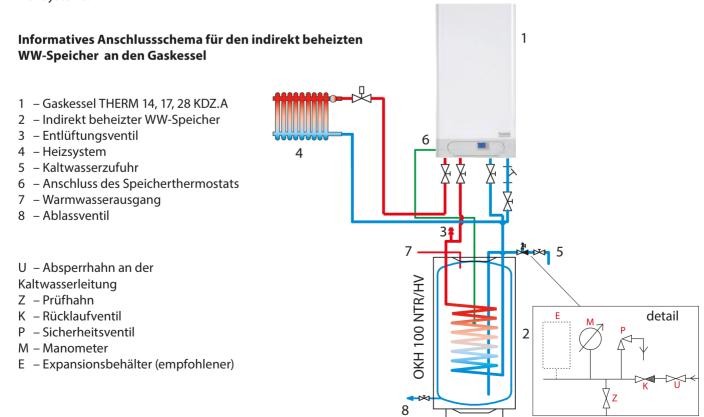
Für die Absicherung einer "vollwertigen" Äquithermregelung (einschließlich der Einstellung des Zeitprogramme usw.) empfehlen wir den intelligenten programmierbaren Regulator CR 04, PT 59 bzw. Therm RC 03 zu nutzen, welcher fortlaufend mit dem Mikroprozessor der Kesselautomatik kommuniziert. Es kommt somit zur Übertragung von Informationen nicht nur über die gewünschte Temperatur des Heizsystems in Abhängigkeit von der Raum- und Außentemperatur, sondern auch zur Abbildung der Betriebsinformationen über den Kessel (Arbeitsmodus, Leistung, Temperatur, ggf. Störungen usw.). Dieses System zeichnet sich durch viele einstellbare und abbildbare Parameter für eine optimale Regulierung des Heizgerät mit Modulation der Kesselleistung aus.

Die angeführten Anbauregulierungen sind nicht, ausgenommen kurzzeitige Sonderangebote, Gegenstand der Lieferung des Kessels!

2.3.5 Erhitzung von Warmwasser (WW)

Die Kessel THERM KDC.A, KDZ.A, KDZ5.A und KDZ10.A sind standardmäßig zur WW-Durchlauferhitzung bzw. zur WW-Bereitung in einem externen bzw. eingebauten, indirekt beheizten Speicher angepasst.

2.3.5.1 Speicher-WW-Aufbereitung – BESCHREIBUNG DER FUNKTIONEN (Kessel KDZ.A, KDZ5.A, KDZ10.A)

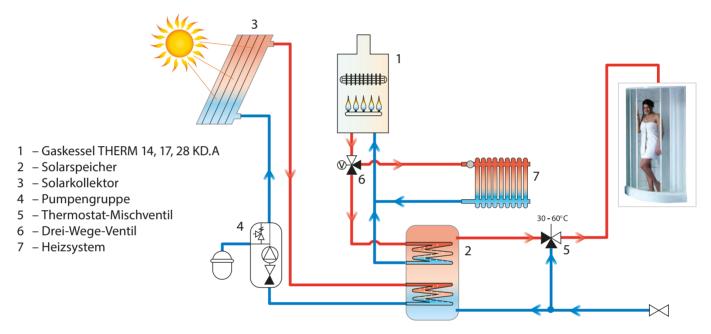

Ist das Thermostat des WW-Speichers eingeschaltet, beginnt die Arbeitsphase zur Erhitzung des Speichers. Hat das Relais des Drei-Wege-Ventils eingeschaltet und insofern der Kessel in der Aufheizungsphase des Heizsystems lief, werden Brenner und Pumpe gestoppt.

Nachdem die Verstellung des Drei-Wege-Ventils vonstatten geht (im Intervall von 8 Sekunden), wird die Pumpe gesetzt. Nach der Sequenz der Kontrolle der Sicherheitselemente ist die Zündung des Brenners erlaubt.

Ab der Detektion der Anwesenheit der Flamme wird die Startleistung des Kessels noch über die Zeit von 2 Sekunden aufrechterhalten und danach geht er in die Phase der kontinuierlichen Leistungsmodulation mit PID-Regulierung bei gewünschtem Beheizungstemperaturwert von 80 °C über. Bei einer eventuellen Überhöhung über 86 °C wird der Brennvorgang eingestellt und die Umlaufpumpe bleibt in Betrieb. Zu einer abermaligen Zündung kommt es bei einem Temperaturrückgang unter 80 °C. Die Arbeitsphase in der Betriebsart zur WW-Bereitung endet mit der Ausschaltung des Thermostats des WW-Speichers.

Es folgen der Stopp der Verbrennung und die Nachkühlung des Austauschers mittels Zeitfunktion des Umlaufpumpennachlaufs (10 Sekunden). Nach der Beendigung und dem Stopp der Pumpe schaltet das Relais des Drei-Wege-Ventils um dessen Verstellung wird in Gang gesetzt. Die Zeit zur Verstellung des Drei-Wege-Ventils wird durch die Zeitfunktion zur Blockierung des Kesselbetriebs über die Zeit von 8 Sekunden behandelt. Erst dann kann die eventuell gewünschte Aufheizung des Heizsystems in Gang gesetzt werden.

Im Fall des Zusammentreffens von Anforderungen hat die Betriebsart zur WW-Bereitung Vorrang vor der Aufheizung des Heizsystems.


2.3.5.2 WW-Durchlauferhitzung – BESCHREIBUNG DER FUNKTIONEN (Kessel KDC.A)

Die Arbeitsphase dieser Betriebsart des Kessels beginnt durch die Einschaltung des WW-Durchlaufschalters. Der Ventilator beginnt zu laufen, der Lauf der Umlaufpumpe sowie die Zündautomatik werden aktiviert. Der Kessel zündet auf die Startleistung und erhöht die Kesselleistung anschließend (ca. 10 Sekunden nach der Zündung des Kessels) auf das Maximum, um die WW-Auslasstemperatur so schnell wie möglich auf den eingestellten Wert zu erhöhen. Diese Temperatur hält er durch die Leistungsregulierung vom Typ PID aufrecht. Nach 10 Sekunden ab der Beendung der WW-Entnahme kommt die Pumpe zum Stehen.

Die WW-Bereitung hat im Fall gleichzeitiger Bedürfnisse Vorrang vor der Beheizung.

2.3.6 Erhitzung von Warmwasser im Akkumulationsspeicher in Verbindung mit Solarpaneelen.

Die Kondensations-Gaskessel in den Ausführungen THERM 14, 17, 28 KD.A und KDZ.A können mit Vorteil zur Nachheizung des Solarsystems mit so genanntem Akkumulationsspeicher genutzt werden. Unsere geografischen Bedingungen ermöglichen nicht Solarsystem ohne eine zusätzliche (Reserve-) Wärmequelle zu betreiben, die in unserem Fall ein Gaskessel ist. Der Kessel kümmert sich selbstständig um die Beheizung und ist im Bedarfsfall in der Lage vorrangig den WW-Solarakkumulator nachzuheizen.

Beschreibung der Funktionen des Kessels in diesem Modus:

Dieser Arbeitsmodus hat den gleichen Charakter wie die "Speicher-WW-Aufbereitung", die in einem der vorangehenden Kapitel beschrieben wird mit dem Unterschied, dass die Temperatur im WW-Akkumulationsspeicher durch einen Temperaturfühler anstelle des Speicherthermostats überwacht wird. Die Einstellung der gewünschten WW-Temperatur wird entweder aus dem Kommunikationsanschluss oder durch den WW-Drehsteller am Bedienfeld des Kessels ermöglicht. Die Sonde der WW-Temperatur muss angeschlossen und funktionsfähig sein, sonst wird die WW-Erhitzung gestoppt. Durch die Verbindung der Kontakte an den Anschlussklemmen des Speicherthermostats (in diesem Fall des nicht verwendeten) wird die Temperatur der Aufheizung auf 60°C gezwungen (unabhängig von der Einstellung der WW-Temperatur). Diese Funktion dient zum Schutz vor einer eventuellen Vermehrung von schädlichen Bakterien vom Typ Legionelle.

2.4 Ausgewählte Schutzfunktionen des Kessels

Antiblockierungsfunktion

Nach 24 Stunden ohne Betrieb wird die Pumpe für einen Zeitraum von 30 Sekunden gestartet, damit ihrer eventuellen Blockierung (Versumpfung) vorgebeugt wird. Nach 24 Stunden der Untätigkeit wird auf die Dauer von 10 Sekunden das Relais des Drei-Wege-Ventils (insofern der Kessel damit ausgestattet ist) aus dem gleichen Grund eingeschaltet. Im Fall der Anforderung zur Erwärmung (Heizung bzw. Warmwasser) während der Ausübung dieser Funktion wird die Antiblockierungsfunktion sofort beendet und die Anforderung gestartet. Die Antiblockierungsfunktion ist auch im Status der Kesselblockierung sowie in der Stellung des Stellers im Modus "AUSGESCHALTET" eingeschaltet (insofern der Kessel ständig am Stromnetz angeschlossen ist).

Frostschutz

Der Kessel ist mit einem Frostschutzsystem ausgestattet, welches den Kessel (nicht das Heizungssystem, den Speicher und die Warmwasserleitung) vor dem Einfrieren schützt. Die Frostschutzfunktion wird bei einem Absinken der Temperatur im Kessel von unter 6 °C aktiviert. Es startet die Pumpe, der Kessel zündet und erwärmt den Heizkreislauf mit einer minimalen Leistung bis auf 30 °C. Bei dieser Temperatur wird der Brennprozess eingestellt und die Pumpe bleibt für den Zeitraum der eingestellten Funktion des Nachlaufs der Pumpe in Betrieb. Falls sich der Kessel im Blockierungsstatus der Verbrennung (Störung) befindet, wird nur die Pumpe aktiviert. Die Frostschutzfunktion ist auch bei der Stellung des Wählschalters im Modus "AUS" oder "SOMMER"aktiv".

Durchlaufkontrolle (Betriebskontrolle der Pumpe)

Vor jedem Zünden des Kessels wird eine Kontrolle des Durchlaufschalters vorgenommen, der die richtige Funktion der Kesselpumpe auswertet. Die abermalige Kontrolle des Durchlaufschalters wird in dem Fall aktiviert, in dem der Durchlaufschalter binnen 15 Sekunden des Pumpelaufs nicht einschaltet. Die Pumpe hält an und nach 45 Sekunden wird ein weiterer Versuch zur Ingangsetzung des Kessels unternommen. Dieser Vorgang wird 4x mit anschließender Signalisierung der Störung E 12 wiederholt. Die Störung muss mit dem Modiumschalter freigegeben werden. Sollte die Dauer der Untätigkeit der Pumpe vor der erneuten Ingangsetzung des Kessels 30 Minuten überschreiten, wird der erste Intervall des Pumpenlaufs auf 180 Sekunden verlängert. Zwecks Wiederherstellung der Funktion des Kessels ist die Ausschaltung und abermalige Einschaltung mit dem Drehsteller der Moduswahl, ggf. durch Ausschaltung und abermaligen Anschluss der Netzspeisung erforderlich.

Antizyklusbildung

Eine Funktion, welche eine Schleife des Kessels im Modus Heizung verhindert, wenn bei einer Betriebsabschaltung nicht das wiederholte Zünden des Kessels früher erlaubt wird, als wie die eingestellte s.g. Antizykluszeit abläuft (werksseitig auf 5 Minuten eingestellt). Diese Funktion wird am meisten in den Heizsystemen angewendet, wo der maximale Wärmeverlust des gegebenen Objekts der niedrigsten Grenze des Leistungsbereichs des Kessels entspricht.

Eine Änderung der Antizykluszeit im Bereich von 0 bis 10 Minuten kann nur ein autorisierter Kundendiensttechniker vornehmen!

Pumpennachlauf

Der Nachlauf der Pumpe ist standardmäßig aus der Fertigung auf 5 Minuten eingestellt. Nach dem Erlöschen der Brenner des Kessels, das durch die Abschaltung des Zimmerthermostats befindet sich die Pumpe weiterhin während des eingestellten Pumpennachlaufs in Betrieb. Im Fall, dass der Kessel im Wintermodus ohne Zimmerthermostat betrieben wird, dann ist die Pumpe ständig eingeschaltet.

Eine Änderung des Pumpenachlaufs beim Betrieb mit einem Zimmerthermostat im Bereich von 0 - 10 min kann nur ein autorisierter Servicetechniker durchführen.

Ventilatornachlauf

Nach Beendung des Brennvorgangs ist der Ventilator noch 30 s unter Beibehaltung der Drehzahl, die der Startleistung entspricht, in Betrieb (Entzug des Verbrennungsgasrests aus der Brennkammer).

Hinweis: Sämtliche erwähnten Sicherheits- und Schutzfunktionen sind nur dann in Betrieb, wenn der Kessel an eine elektrische Spannungsversorgung angeschlossen ist!

Mit Rücksicht auf die Anforderung der erhöhten Kontrollen der Tätigkeit des Mikroprozessors wird immer einmal in 24 Stunden ein zwangsweises Reset der Elektronik mit nachfolgender Initialisierung durchgeführt (macht sich in einer kurzzeitigen Unterbrechung der Kesseltätigkeit und dem Erlöschen der Angaben auf dem Display ähnlich wie beim Einstecken der Netzspannungsversorgung des Kessels in die Steckdose bemerkbar).

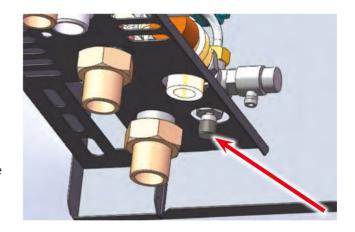
2.5 Instandhaltung und Kundendienst

Eine regelmäßige Wartung ist sehr wichtig für einen zuverlässigen Betrieb, zum Erreichen einer hohen Lebensdauer und auch eines Verbrennungswirkungsgrades. Wir empfehlen dem Benutzer nachdrücklich, dass er sich mit der Kundendienstorganisation am Wohnort in Verbindung setzt und sich regelmäßige Durchsichten des Kessels nach einem Betriebsjahr absichert (siehe Kapitel Garantie und Garantiebedingungen). Der Kundendiensttechniker nimmt z.B. die Kontrolle der Bedienungs- und Sicherheitselemente des Kessels, die Kontrolle der Dichtheit der Gas- und Wasserleitung, ggf. die Säuberung des Brenners und des Austauschers von verbrannten Staubteilchen u.ä. vor.

Für einen fehlerlosen Betrieb des Heizungssystems muss auch regelmäßig der Ausgangsdruck des Wassers in kaltem Zustand kontrolliert werden. Im Fall des Druckrückgangs unter 0,8 bar ist erforderlich das Nachfüllen des Heizsystems vorzunehmen.

2.5.1 Nachfüllen des Heizsystems

Das Nachfüllen von Wasser in das Heizsystem (Druckerhöhung des Systems) kann über das Nachfüllventil erfolgen, das direkt am Kessel integriert ist. Das Wasser zur Nachfüllung muss bestimmte Parameter erfüllen, siehe Kapitel 3.8.


Beim Nachfüllen müssen diese Bedingungen berücksichtigt werden:

- a) der Druck des in den Kessel zugeführten Wassers muss höher sein als der Wasserdruck im Heizsystem (im umgekehrten Fall kann es zu einer Strömung des Heizwassers zurück in die Wasserleitung kommen!)
- b) das Nachfüllen des Wassers muss ausschließlich im kalten Zustand erfolgen (Heizwassertemperatur im Kessel max. bis 35 °C)

Vorgehensweise beim Nachfüllen von Wasser in das Heizsystem:

- 1. 1. Trennen Sie den Kessel vom Stromspannungsnetz
- Öffnen Sie von Hand langsam das Nachfüllventil und verfolgen Sie das Manometer am Bedienfeld des Kessels
- 3. Füllen Sie den Systemdruck auf den benötigten Wert (nach Heizungssystem, empfohlen 1,0 1,5 bar)
- 4. Schließen Sie das Nachfüllventil
- Schließen Sie den Kessel am Stromnetz an und nehmen Sie den Kessel wieder in Betrieb

2.6 Garantie und Garantiebedingungen

Der Hersteller haftet nicht für mechanische Beschädigung einzelner Komponenten durch nicht schonenden Umgang, für durch unsachgemäßen Eingriff in die Elektronik bei der Einstellung und Anbindung von zusätzlichen Regulierungen verursachten Schäden, für Schäden, die durch die Verwendung anderer Bauteil und Komponenten als Ersatz für durch den Hersteller verwendeten Originalteile verursacht werden.

Die Garantie bezieht sich weiterhin nicht auf Mängel, die durch die Nichteinhaltung von wichtigen Hinweisen und Bedingungen verursacht werden, die in den einzelnen Abschnitten dieses Handbuches festgelegt sind.

Die Garantie bezieht sich ebenfalls nicht auf abnormale Verhältnisse in Stromversorgungsnetzen (Schwankung der Stromspannung – insbesondere Überspannungsspitzen, Druck und Reinheit des Gases u.Ä.), auf Defekte von Geräten außerhalb des Kessels, die dessen Betrieb beeinflussen, einen ungeeigneten Verbrennungsgasabzug, Verschmutzungen in der zu verbrennenden Luft, Fremdkörper im Heizsystem bzw. im Kreis Kessel – Speicher, Beschädigung durch äußere Einflüsse, mechanische Beschädigung, Lagerung, Transport und Störungen, die durch eine Naturkatastrophe entstanden sind.

In diesen fällen kann die Kundendienstorganisation Eine Bezahlung für die Reparatur vom Kunden verlangen.

Die THERMONA GmbH gewährt eine Garantie gemäß den Bedingungen, die in dem dem Produkt beiliegenden Garantieschein angeführt werden.

Bedingungen für die Geltendmachung der Garantie:

- 1. Regelmäßig 1x jährlich eine Kontrolle des Kessels durchführen. Die Kontrollen darf nur eine dazu berechtigte Organisation, d.h. ein Vertragsservice durchführen. Die Liste der Kundendienstzentralen liegt jedem Kessel bei. Ein aktuelles Verzeichnis der Kundendienstzentrale ist auf www.thermona.cz zugänglich.
- 2. Sämtliche Aufzeichnungen über durchgeführte Garantiereparaturen und Jahreskontrollen der Kessel in der Anlage dieser Anleitung zu belegen.
- 3. Den ausgefüllten und bestätigten Garantieschein sowie das Protokoll über die Inbetriebnahme der Produkte THERM beifügen.

3. ANLEITUNG ZUR INSTALLATION

3.1 Grundanweisungen zur Montage des Kessels

Die Wand-Kondensationskessel THERM sind für den Betrieb in gewöhnlichen Warmwasser-Heizungssystemen bestimmt.

Die Montage der Kessel darf eine qualifizierte Fachfirma durchführen, wobei es notwendig ist, auf alle Ratschläge und Hinweise in dieser Anleitung zu achten. Die Montage muss in Übereinstimmung mit den geltenden Normen und Vorschriften sein – siehe ČSN EN 1775, ČSN 38 6462, ČSN 33 2000 – 7 – 701 ed.2, ČSN 06 1008, ČSN 73 4201, TPG 704 01, TPG 800 02, TPG 908 02, Bekanntmachung Nr. 48/1982 Gbl.

Die Pflicht der Montagefirma ist vor der Installation die Kontrolle durchzuführen, ob:

- der Kesseltyp mit dem bestellten Kessel übereinstimmt
- die Kesselauswahl für die gegebene Anwendung richtig war (Gasart, Heizungssystem, Rauchgasführung, Luftansaugung)
- die Lieferung vollständig ist

3.2 Komplettheit der Lieferung

Die Wandkessel THERM werden komplett montiert geliefert. Alle Bauteil des Kessels werden vor der Komplettierung vom Hersteller überprüft und eingestellt. Jeder Kessel ist auf die Dichtigkeit des Wasserkreislaufs, die Dichtigkeit des Gaskreislaufes überprüft und es ist die Funktion der Regelund Sicherungselemente überprüft.

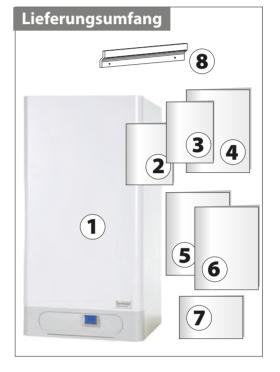
Die Standardlieferung des Kessels umfasst:

- 1. Kessel
- 2. Anleitung zur Installation, Bedienung und Instandhaltung des Kessels
- 3. Servicenetz
- 4. Garantieschein (3 Kopien)
- 5. Protokoll über die Inbetriebnahme des Produkts THERM
- 6. Anmeldung zur Registrierung in das Programm der verlängerten Garantieleistung
- Bestätigung über die Durchführung der 1. und 2. Kundendienstdurchsicht
- 8. Aufhängeleiste, inkl. Befestigungselemente

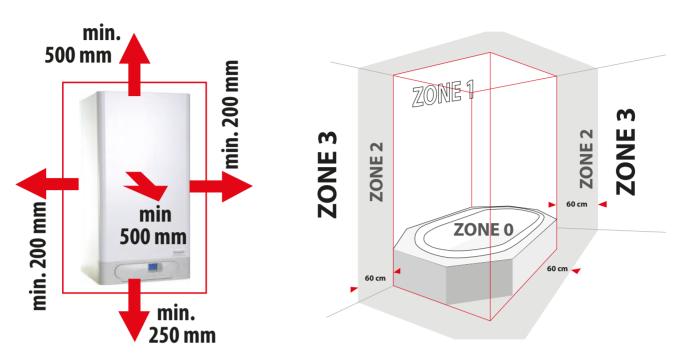
Zubehör:

Auf Anforderung kann das notwendige Zubehör bestellt werden (Rauchgasführung, Regulierung, Außensensor u.ä.). Ausführlichere Informationen finden Sie im Produkte- und Zubehörkatalog bzw. unter www.thermona.cz vor.

Zur Rauchgasführung der Kessel in der Ausführung Turbo muss ausschließlich die durch den Lieferanten des Kessels gelieferte Rauchgasführung verwendet werden. Nur unter der Bedingung zeigt der Kessel die aufgeführten Verbrennungsparameter, Leistung, Wirkungsgrad usw. auf.


Setzen Sie sich im Fall von Zweifeln bzw. Nachfragen vor der Montage des Kessels mit dem Hersteller oder Lieferant in Verbindung.

3.3 Platzierung des Kessels


Die Kondensations-Kessel THERM können in der Grundumgebung AA5/AB5 gemäß ČSN 33 2000-3 und ČSN 33 2000-5-51 ed.3 (Temperaturbereich +5 bis 40 °C, Feuchtigkeit in Abhängigkeit von der Temperatur bis max 85 %, ohne schädliche, chemische Einflüsse) installiert werden. Die Verbrennungsluft darf keine Halogenwasserstoffe und Dämpfe aggressiver Stoffe enthalten, darf keine hohen Luftfeuchtigkeitsgehalt und Staubhaltigkeit haben.

Die Kessel lassen sich in Wohn- sowie Gewerberäumen installieren (der Geräuschpegel entspricht der Bekanntmachung des Ministeriums für Gesundheit Nr. 13/1977 Gbl.).

Die Wandkessel THERM **dürfen nicht** in Räumen mit Wanne, in Bädern, Waschräumen und Duschen in den Zonen 0, 1 und 2 nach ČSN 33 2000-7-701 ed.2 installiert werden. 2007 und im Waschraum gemäß ČSN 33 2130 ed.2: 2009. Die Schutzart IP 41 (D) der elektrischen Abschnitte erfüllt die Bedingungen der Beständigkeit vor vertikal tropfendem Wasser – eine eventuelle Möglichkeit der Platzierung auch in Räumen mit einer Badewanne bzw. Dusche in der Zone 3 wiederum gemäß ČSN 33 2000-

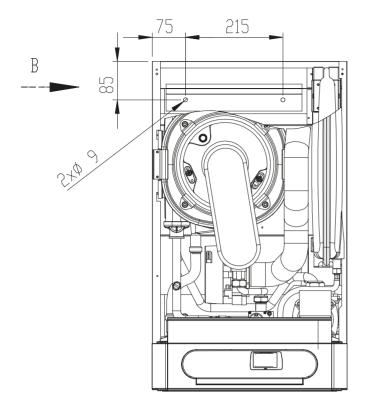
7-701 ed. 2: 2007. Wird der Kessel in zulässigen Zonen installiert, muss gleichzeitig auch ein zusätzlicher Schutz durchgeführt werden – der den Schutz-Potenzialausgleich aller stromführenden Teile gemäß Art. 701.415.2 ČSN 33 2000-7-701 ed.2: ergänzt. 2007 und čl.415.2 ČSN 33 2000-4-41 ed.2: 2007. Der Installationsort ist so zu wählen, dass im Fall der Bedienung oder einer Servicedurchsicht ein Zugang möglich ist. Die empfohlenen Entfernungen sind auf den nachfolgenden Bildern aufgeführt.

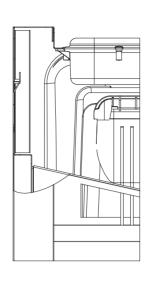
Hinweis:

Zur Kesseloberfläche dürfen keine Gegenstände im Sinne der ČSN 06 1008 (klassifiziert als ČSN EN 13501-1+A1:2010) auf einer geringere Entfernung angenähert werden als: **100 mm** aus Materialien B - nicht leicht brennbar, C1 - schwer brennbar oder C2 - mittel brennbar **200 mm** aus Materialien C3 - leicht brennbar (z.B. Holzfaserplatten, Zellulosestoffe, Polyurethan, Polystyren, Polyethylen, PVC u.a.)

Die Sicherheitsentfernung von brennbaren Gegenständen vom Kessel beträgt 50 mm, vom Rauchfang und von der Kontrollöffnung 200 mm. Näher können Gegenstände aus entflammbaren Materialien nicht platziert werden. Die Wand, an der Kessel aufgehängt wird, muss aus feuerfestem Material sein.

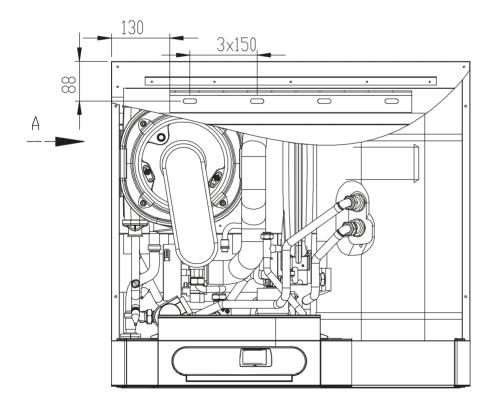
Vor Beginn von Arbeiten, welche als Folge eine Änderung der Umgebung in den Räumlichkeiten des installierten Kessels haben können (z.B. Arbeiten mit Anstrichstoffen, Klebstoffen usw.), ist es notwendig, den Kessel mit dem Modiumschalter auszuschalten (Zeigerposition auf "0") und ihn vom elektrischen Netz zu trennen (durch Herausziehen des Netzsteckers aus der Steckdose).

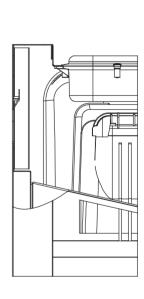

3.4 Aufhängen des Kessels


Die Wand-Kondensationskessel THERM 14, 17, 28 KD.A, KDZ.A, KDZ5.A und THERM 28 KDC.A werden an der Wand mit Hilfe einer zusammen mit dem Kessel gelieferten Aufhängeleiste nach den Abbildungen unten befestigt.

Vorgehensweise beim Aufhängen des Kessels:

- 1. Vermessen Sie gründlich die Position zum Aufhängen des Kessels (gemäß der Abbildung mit den Maßen)
- 2. Legen Sie die Leiste an die gewünschte Stelle und richten sie mithilfe einer Wasserwaage aus.
- 3. Kennzeichnen Sie mit einem Stift die Stelle, an der die Löcher gebohrt werden
- 4. Nehmen Sie die Leiste weg und bohren mithilfe eines Bohrers vom Ø 10 mm die erforderlichen Löcher
- 5. Schieben Sie Dübel in die Öffnungen und nachfolgend befestigen Sie mit Hilfe der beigelegten Schrauben die Leiste
- 6. Hängen Sie den Kessel an die Aufhängeleiste
- 7. Installieren Sie die Rohrleitung für den Verbrennungsgasabzug und die Luftzufuhr. Der Raum zwischen dem Rohr und dem Durchbruch in der Wand füllen mit einem nicht brennbaren Material aus (denken Sie dabei an den Erhalt der Zerlegbarkeit der Rauchgasführung).

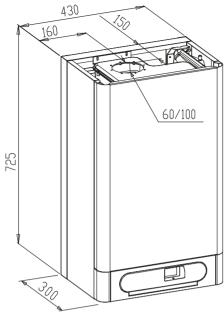

Im Fall der Montage an eine Wand mit geringer Tragkraft wird empfohlen, die Befestigung mit einem Bautechniker zu konsultieren. Um den Kessel herum muss aus dem Grund einer Servicedurchsicht bzw. eines eventuellen Serviceeinsatzes ein Handhabungsraum so gelassen werden, dass am Kessel leicht und sicher mit Händen sowie normalem Handwerkzeug gearbeitet werden kann.

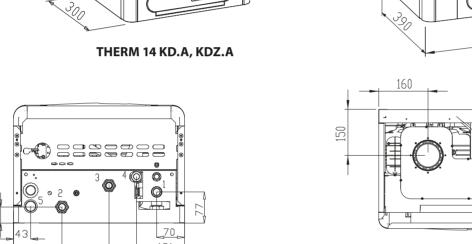


В

THERM 14, 17, 28 KD.A, KDZ.A THERM 28 KDC.A

Α

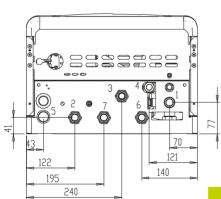

THERM 14, 17, 28 KDZ5.A


3.5 Anschluss des Kessels an das Warmwassersystem

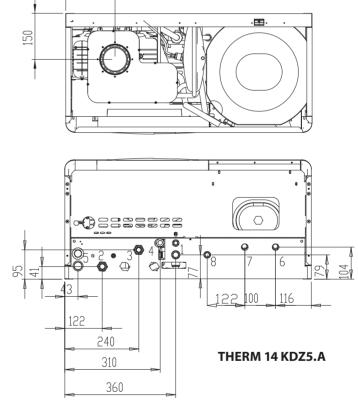
Die eigentliche Anbindung der Kessel zur Heizungsverteilung muss in einer solchen Weise durchgeführt sein, dass die Anbindungsleitungen des Kessels nicht kraftmäßig belastet sind und es gleichzeitig nicht zu ihrer Belüftung kommt.

Hinsichtlich dessen, dass es sich um ein Warmwasser-Durchlaufkessel handelt, welcher mit einer eigenen Pumpe ausgestattet ist, muss seine Anbindung zum Heizungssystem durch ein Projekt mit Bindung an Berechnungen der hydraulischen Verhältnisse des gesamten Systems gelöst werden. Aufgrund der optimalen Ausnutzung der Kondensationsbetriebsart des Kessels ist es zweckvoll das Heizsystem auf niedrige Temperatur zu dimensionieren ($\Delta t = 50/30$ °C). Maximaler Überdruck des Heizsystems 0,8 bar. Wir empfehlen einen Heizwasserdruck im System im Bereich von 1,0 - 1,5 bar aufrechtzuerhalten.

3.5.1 Maße und Anschluss

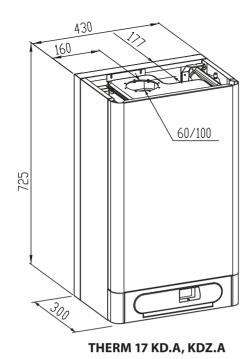

Ø 60/100

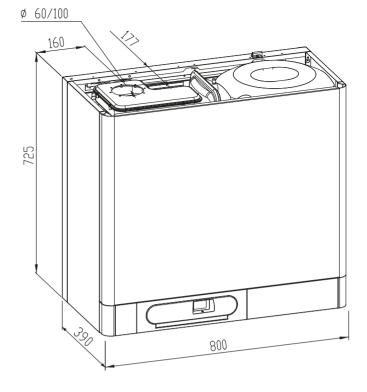
725

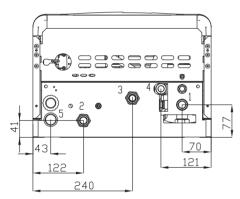

160

THERM 14 KD.A

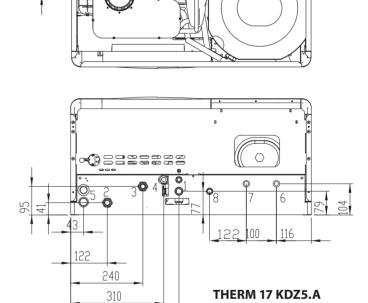
240

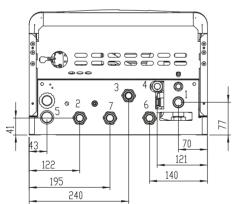



THERM 14 KDZ.A

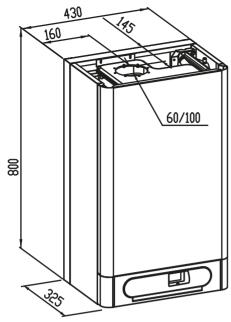


800

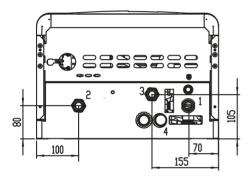

ANSCHLUSS DER KESSEL	KESSELTYP						
ANSCHLUSS DER RESSEL	MASS	GEWINDEART	14 KD.A	14 KDZ.A	14 KDZ5.A		
Rücklaufwassereinlass	G 3/4"	Außengewinde	1	1	1		
Heizwasserausgang	G 3/4"	Außengewinde	2	2	2		
Gaseingang	G 3/4"	Außengewinde	3	3	3		
Ausgang des Sicherheitsventil	G 1/2"	Innengewinde	4	4	4		
Kondensatabführung			5	5	5		
Warmwassereinlass aus dem Speicher	G 3/4"	Außengewinde	-	6	-		
Heizwasserauslass in den Speicher	G 3/4"	Außengewinde	-	7	-		
Gebrauchwassereinlass	G 1/2"	Außengewinde	-	-	6		
Gebrauchwasserauslass	G 1/2"	Außengewinde	-	-	7		
Gebrauchwasserzirkulation			-	-	8		



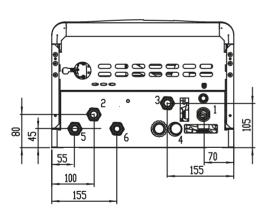
THERM 17 KD.A

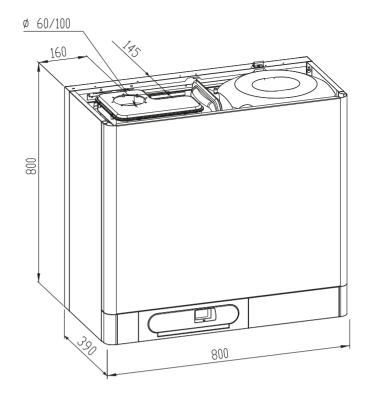


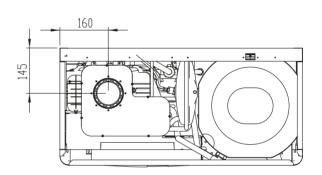
THERM 17 KDZ.A

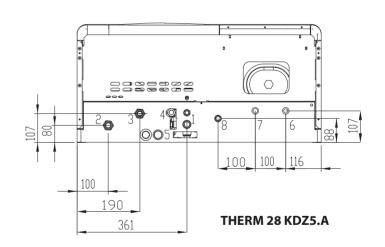

ANGCILLIES DED VESSEL	KESSELTYP						
ANSCHLUSS DER KESSEL	MASS	GEWINDEART	17 KD.A	17 KDZ.A	17 KDZ5.A		
Rücklaufwassereinlass	G 3/4"	Außengewinde	1	1	1		
Heizwasserausgang	G 3/4"	Außengewinde	2	2	2		
Gaseingang	G 3/4"	Außengewinde	3	3	3		
Ausgang des Sicherheitsventil	G 1/2"	Innengewinde	4	4	4		
Kondensatabführung			5	5	5		
Warmwassereinlass aus dem Speicher	G 3/4"	Außengewinde	-	6	-		
Heizwasserauslass in den Speicher	G 3/4"	Außengewinde	-	7	-		
Gebrauchwassereinlass	G 1/2"	Außengewinde	-	-	6		
Gebrauchwasserauslass	G 1/2"	Außengewinde	-	-	7		
Gebrauchwasserzirkulation			-	-	8		

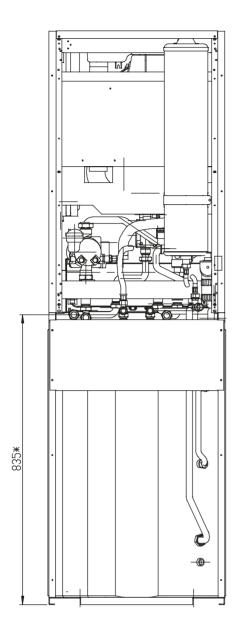
360

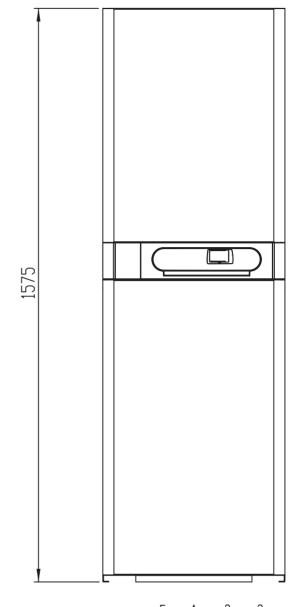

160

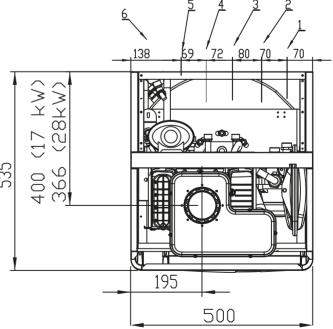

THERM 28 KD.A, KDZ.A, KDC.A




THERM 28 KD.A

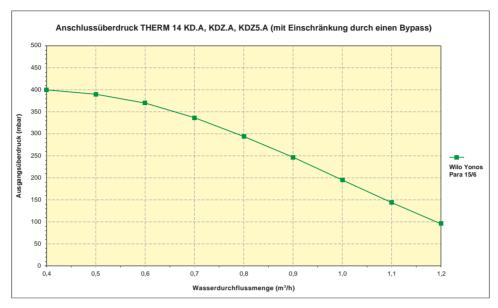

THERM 28 KDZ.A, KDC.A

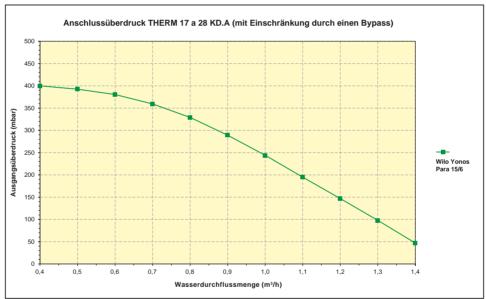

ANSCHLUSS DER KESSEL	KESSELTYP						
ANSCHLOSS DER RESSEL	MASS	GEWINDEART	28 KD.A	28 KDZ.A	28 KDC.A	28 KDZ5.A	
Rücklaufwassereinlass	G 3/4"	Außengewinde	1	1	1	1	
Heizwasserausgang	G 3/4"	Außengewinde	2	2	2	2	
Gaseingang	G 3/4"	Außengewinde	3	3	3	3	
Ausgang des Sicherheitsventil	G 1/2"	Innengewinde				4	
Kondensatabführung			4	4	4	5	
Warmwassereinlass aus dem Speicher	G 3/4"	Außengewinde	-	5		-	
Heizwasserauslass in den Speicher	G 3/4"	Außengewinde	-	6		-	
Gebrauchwassereinlass	G 1/2"	Außengewinde	-	-	5	6	
Gebrauchwasserauslass	G 1/2"	Außengewinde	-	-	6	7	
Gebrauchwasserzirkulation			-	-		8	

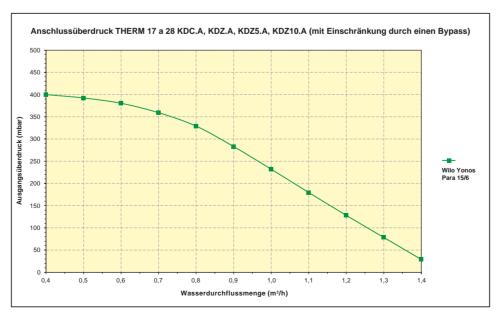


* Die angeführten Maße vom Fußboden aus sind aufgrund der Anwendung von Stellfüßen variabel +- 10 mm

THERM 17 KDZ10.A, 28 KDZ10.A




3.5.2 Graphen der Anschlussüberdrücke des Heizwassers (am Heizwasserauslass)


Hinweis: Die Kurven der anwendbaren Überdrücke des Heizwassers sind für die Pumpe **Wilo Yonos PARA RSL 15/6-3** für die höchste Regelstufe ausgearbeitet.

Hinsichtlich zur Übergabeleistung des Kessels und der Widerstandseigenschaft des Austauschers empfehlen wir nicht, die Leistung der Pumpe zu verringern.

Das Rohrsystem muss so geführt sein, dass die Entstehung von Luftblasen verhindert und die Entlüftung erleichtert wird. Entlüftungselemente sollten sich an allen am höchsten gelegenen Teilen des Heizungssystems befinden und weiter dann an allen Heizkörpern.

Vor der Überprüfung und Inbetriebnahme muss nach ČSN 06 0310 Bestandteil der Montage eine gründliche Durchspülung des Heizungssystems in einen völlig sauberen Zustand durchgeführt werden. Zur Verhinderung des Eintrags von Verunreinigungen in das System des Kessels muss der Eingang des Rücklaufs aus dem Heizungssystem in den Kessel unbedingt mit einem geeigneten Filter bzw. Schlammventil besetzt sein. Der Filter und der Schlammabscheider müssen in regelmäßigen Intervallen kontrolliert und gereinigt werden.

Das Heizsystem muss im Einklang mit der ČSN 06 0830 – Heizsysteme in Gebäuden – Sicherungseinrichtungen und mit der ČSN 06 0310 – Heizsysteme in Gebäuden – Projektierung und Montage ausgeführt werden.

Der Hersteller verlangt:

- auf die Saugseite der Pumpe einen Filter und eine Schlammeinrichtung montieren, (z.B. Spirovent Kal)
- in Heizsystemen mit Thermostatventilen ein Überströmventil einzusetzen
- am niedrigsten Punkt des Systems in unmittelbarer N\u00e4he des Kessels einen Wasserhahn zum F\u00fcllen und Ablassen des w\u00e4rmetragenden Mediums aus dem Heizungssystem und zur Entschlammung zu platzieren
- auf den Ausgang des Kessels und am höchsten Punkt des Heizungssystems eine Entlüftungseinrichtung zu setzen

Der Hersteller empfiehlt:

- das System mit weichem Wasser nach ČSN 07 7401 zu füllen
- den Kessel am Eingang sowie Ausgang durch eine Absperrarmatur abzutrennen (siehe ČSN 06 0830), damit im Fall der Kontrolle, der Reparatur des Kessels oder der Reinigung des Filters es nicht notwendig ist, das ganze System abzulassen
- im Betrieb von den Armaturen die Bedienungshebel abzunehmen und sie gegen Handhabung abzusichern

3.5.3 Expansionsbehälter

Die Kondensations-Kessel THERM sind standardmäßig mit einem integrierten Expansionsbehälter des Heizsystems mit einem Fassungsvermögen von 6 l, ggf. 7 l ausgestattet. Das angeführte Fassungsvermögen des Expansionsbehälters ist in den meisten Fällen für die Deckung der Heizwasserexpansion in Standardheizsystemen mit Plattenheizkörpern ausreichend. Manche, ältere Heizsysteme mit einem größeren Heizwasservolumen bzw. Systeme mit Fußbodenheizung sind oft erforderlich noch mit einem zusätzlichen Expansionsbehälter zu bestücken.

3.5.4 Verwendung von Frostschutzmitteln

Wir empfehlen nicht, in Heizungssystemen Frostschutzmittel hinsichtlich zu ihren für den Betrieb des Kessels ungeeigneten Eigenschaften einzuleiten. Es handelt sich insbesondere um die Verminderung der Wärmeabgabe, große Volumenausdehnung, Alterung, Beschädigung der Gummiteile des Kessels.

3.5.5 Sicherheitsventil

Im unteren Teil des Kessel befindet sich ein Sicherheitsventil. Beim Betrieb des Kessels kann es unter bestimmten Umständen zu einem Entweichen von Wasser oder Dampf aus dem Sicherheitsventil kommen. Aus diesem Grund ist es günstig, an den Ausgang des Sicherheitsventils eine geeignete Ableitung zu montieren, welche in ein Abwassersystem geführt wird.

Auf keinen Fall darf mit dem Sicherheitsventil während des Betriebs des Kessels manipuliert werden!

3.6 Anschluss des Kessels THERM 14, 17, 28 KDZ5.A und 17, 28 KDZ10.A an die Gebrauchwasserleitung

Der Anschluss der Gebrauchwasserleitung muss unter Komplettierung mit allen Sicherheitsinstrumenten erfolgen, die in den nationalen Vorschriften angeführt werden (in der Tschechischen Republik ist das die ČSN 060830). Die Wasserqualität in den WW-Kreisen hat wesentlichen Einfluss auf die Menge der Verschlammung des indirekt beheizten Austauschers im WW-Speicher. Sie muss deshalb die Qualitätsparameter gemäß der Verordnung MZd. 376/2000 d. Slg. (Trinkwasser) hauptsächlich in den Parametern der Härte (Summe der Stoffkonzentrationen von Kalk und Magnesium < 2.5 mmol/l) erfüllen. Im Zweifelsfall bzw. nicht geprüfter Parameter (eigener Brunnen) empfehlen wir eine automatische Dosiereinrichtung zur Wasseraufbereitung zu verwenden.

3.7 Anschluss des Kessels an die Gasleitung

Der Anschluss des Kessels an das Gas muss immer von einer autorisierten Firma gemäß Verordnung des ČUBP (Tschechisches Amt für Arbeitssicherheit) und ČBU 21/1979 d. Slg. (im Wortlaut der Verordnung 554/1990 d. Slg.) ausgeführt werden, und zwar von Arbeitern mit einer Qualifikation gemäß der Verordnung FMPE (Föderales Ministerium für Brennstoffe und Energie) 175/1975 d. Slg. (im Wortlaut der Verordnung FMPE 18/1986 d. Slg.) und gemäß der genehmigten Dokumentation für Gasinstallationen. Vor dem Kessel wird kein Gasdruckregler mehr eingebaut. Der ist in der Kombi-Gasarmatur enthalten, die Bestandteil des Kessels ist. Der Gaseinlass in den Kessel muss mit einem Kugelventil mit entsprechendem Attest bestückt werden. Der Gashahn muss fei zugänglich sein.

Der Kessel ist zum Betrieb mit Erdgas mit einem Heizwert von 9 – 10,5 kWh/m³ und einem Nenndruck im Verteilernetz von 20 mbar und weiterhin (nach unbedingten Umrüstungen) mit Propan (nur die Kessel THERM 28 KD.A, KDZ.A, KDZ.A, KDZ10.A) mit einem Nenndruck im Verteilernetz von 37 mbar bestimmt.

3.7.1 Umbau auf andere Brennstoffe

Beim Umbau des Kessels vom Gesichtspunkt der Änderung des Gases muss eine Auswechslung der Gasblende, die in der Schraubverbindung zwischen dem Gaseinlass aus der Gasarmatur und dem Mischer platziert ist, erfolgen. Weiter ist erforderlich an der Gasarmatur eine Kontrolle, ggf. die Änderung der Einstellung der jeweiligen Parameter des Mischungsgleichlaufs vorzunehmen. Man stellt die CO2-Menge in den Verbrennungsgasen im Bereich der min. und max. Kesselleistung nach dem Verbrennungsgasanalysegerät ein.

Diese Tätigkeiten kann bedingungslos nur ein geschulter Kundendienstmitarbeiter mit einer Berechtigung vom Hersteller ausüben. Nach der Einstellung des Kessels müssen die zur Vorwahl eingestellten Glieder gegen unbefugten Eingriff abgesichert werden. Für Schäden, die durch eine unqualifizierte Einstellung verursacht werden, trägt der Hersteller keine Haftung.

Nach Beendigung der Montage der Gasleitung zum Kessel ist erforderlich gründlich die Gasdichtheit aller Anschlussstellen zu prüfen.

3.8 Füllen und Ablassen des Heizsystems

Während des Füllen des Heizungssystems muss der Kessel vom elektrischen Netz durch Herausziehen des Netzsteckers aus der Steckdose getrennt sein. Das Füllen muss langsam verlaufen, damit die Luft durch die zuständigen Entlüftungsventile entweichen kann. Das Wasser zum ersten Auffüllen sowie zum Nachfüllen muss gemäß ČSN 07 7401 klar, farblos, frei von suspendierten Stoffen, Ölen und chemisch aggressiven Beimischungen sein, darf nicht sauer sein (der pH-Wert darf nicht geringer als 7 sein), mit minimaler Karbonathärte (max. 3,5 mval/l). Im Fall einer Härteaufbereitung ist erforderlich die vom Hersteller genehmigten Mittel zu verwenden.

3.8.1 Vorgehensweise beim Füllen des Heizsystems:

- 1. Kontrollieren Sie und regulieren den Druck im Expansionsbehälter nach dem vorgeschriebenen statischen Druck im System.
- 2. Öffnen Sie das Überdruckventil des Heizungssystems und verfolgen Sie am Manometer den ansteigenden Druck im Heizungssystem
- 3. Nach dem Füllen des Heizungssystems sollte der Druck im Bereich von 1,0 1,5 bar sein
- 4. Entlüften Sie alle Heizkörper (bei der Wasserzirkulation dürfen keine Wasserblasen zu hören sein)
- 5. Kontrollieren Sie den Wasserdruck im System nach der Entlüftung wird es wahrscheinlich notwendig sein, das Heizungssystem nach zufüllen
- 6. Kontrollieren Sie, ob die Entlüftungsventile an den Heizungskörpern geschlossen sind, die automatischen Entlüftungsventile im Kessel bleiben leicht geöffnet!

Bei Nichteinhaltung obig angeführter Forderungen bezieht sich die Garantie nicht auf die beschädigten Komponenten!

3.8.2 Nachfüllen von Wasser in das Heizsystem

Das Nachfüllen von Wasser in das System ist im Kapitel "Wartung und Service" im Teil "Bedienungsanleitung"beschrieben.

3.8.3 Ablassen des Wassers aus dem Heizsystem

Das völlige Ablassen des Wassers aus dem ganzen Heizsystem muss mit dem am niedrigsten Punkt des Heizsystems platzierten Systemablassventil erfolgen.

3.9 Kondenswasserableitung

Der Kessel ist mit einem Geruchsverschluss (Siphon) ausgestattet, die vor der Inbetriebnahme des Kessels mit ca. 100 ml Wasser gefüllt werden muss. An der Kondenswasserableitung muss zuerst eine Neutralisierungseinrichtung angeschlossen und das Kondenswasser anschließend weiter in die Kanalisation ableiten werden. Das Ablassen des Kondenswassers in die Kanalisation richtet sich nach nationalen bzw. regionalen (örtlichen) Bestimmungen.

Die Abflussleitung muss mit einem Gefälle von mindestens 5° vom Kessel zur Kanalisation ausgeführt und darf nicht auf irgendeine Weise blockiert werden (bei Verstopfung der Kondenswasserableitung kommt es zum Resonanzeffekt der Brennkammer des Kessels).

Kondenswasseranalyse

Zainan	MaCambait	Wert					
Zeiger	Maßenheit	14 kW	17 kW	28 kW			
рН	-	3,0	2,7	3,0			
Nitrite	mg.l ⁻¹	< 0,002	< 0,3	0,3			
Kupfer	mg.l ⁻¹	< 0,1	< 0,1	0,17			
Blei (Pb)	mg.l ⁻¹	< 0,01	< 0,1	0,1			
Cadmium (Cd)	mg.l ⁻¹	< 0,001	< 0,005	0,005			
Zink (Zn)	mg.l ⁻¹	0,022	0,1	0,2			

3.10 Lösung des Verbrennungsgasabzugs

Der Abgasabzug bei diesen Kesseltypen wird mit Hilfe des durch den Hersteller gelieferten Rauchgasrohrsystems gelöst. Vom Gesichtspunkt der Kontrolle der Verbrennungsgaswege ist erforderlich den Verbrennungsgasabzug mit einer Revisionsöffnung auszustatten. Der Verbrennungsgasabzug und ein eventueller Anschluss an einen Schornstein müssen gemäß ČSN 734201 ausgeführt werden. Die konkrete Ausführung des Verbrennungsgasabzugs muss im Projekt des Kesselanschlusses unter Respektierung der Standardregeln für eine eventuelle Kondenswasserableitung entworfen und erstellt werden. Eine horizontale Leitung muss mit einem Gefälle von 2° vom Endstück in Richtung Kessel installiert werden, um ein Herausfließen des Kondenswassers (und eventuelle Vereisung) aus dem Endstück des Abzugs in die Umgebung zu vermeiden.

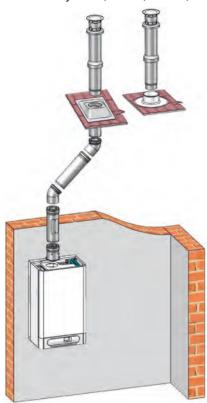
Für die Kondensationskessel THERM sind nachstehende Methoden der Verbrennungsgasabführung zugelassen:

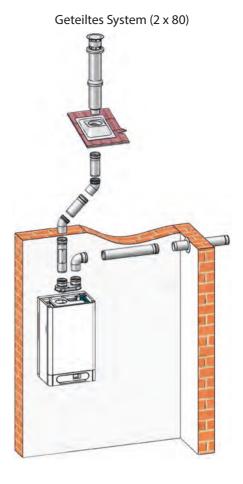
- a) Koaxial-Abgasabführung mit einem Durchmesser von 60/100 mm
- b) Koaxial-Abgasabführung mit einem Durchmesser von 80/125 mm
- c) getrennte Abgasabführung mit einem Durchmesser von 2 x 80 mm

Zulässige, maximale Längen der Abgasabführung:

Manometer der Abgas- abführung	Maximale Länge - horizontal			Maximale Länge - vertikal		
	14 kW	17 kW	28 kW	14 kW	17 kW	28 kW
60/100 mm	10 m	4 m	3 m	9 m	3,7 m	2,7 m
80/125 mm	20 m	15 m	14 m	20 m	15 m	14 m
2 x 80 mm	20 m + 20 m (Summe	13 m + 13 m (Summe	12 m + 12 m (Summe	20 m + 20 m (Summe	13 m + 13 m (Summe	12 m + 12 m (Summe
	Ansaugung + Ausblasung)	Ansaugung + Ausblasung)	Ansaugung + Ausblasung)	Ansaugung + Ausblasung)	Ansaugung + Ausblasung)	Ansaugung + Ausblasung)

Die Mindestlänge der Rauchgasabführung beträgt 1 m. Das erste Knie ist im Fall einer horizontalen Rauchgasabführung schon in der maximalen Länge der Rauchgasabführung inbegriffen. Ein zweites und ggf. weiteres Knie verkürzen die maximale Länge um:


0,5 m - Knie 45° 0,75 m - Knie 90°



Der maximale Gesamtdruckverlust der Abgasabführung beträgt 95 Pa.

Beispiele der Abgasabführung

Koaxialsystem (60/100, 80/125)

3.11 Anschluss des Kessels an einen Speicher

Der Kessel THERM 14, 17, 28 KDZ.A (nach der Erweiterung um ein Drei-Wege-Ventil sowie die Version nur zur Heizung – THERM 14, 17, 28 KD.A) kann zuverlässig und effektiv zusammen mit der Aufheizung des Heizungssystems sowie der Warmwasser-Aufbereitung (WW) gelöst werden. Ausführlich wird das Prinzip der WW-Aufbereitung im Kapitel 2.3.5.1 beschrieben.

Die Leistung des Kessels, an den der WW-Speicher angeschlossen wird, sollte der Nennleistung des Heizeinsatzes bzw. der Wärmeaustauschfläche im Speicher entsprechen. Bei einer Überdimensionierung des Kessels in Bezug auf den Heizeinsatz kommt es dann zu einer Übererhitzung des Heizwassers in diesem Kreislauf mit anschließender Zyklusbildung des Kessels. Mit diesem Vorgang ist ein erhöhter Gasverbrauch eng verbunden.

3.12 Anschluss des Kessels an das Stromnetz

Die Kessel sind mit einem Dreileiter-Anschlusskabel mit einem nicht abtrennbaren Stecker gemäß ČSN 34 0350 ed.2 ausgestattet: 2009. Der Netzanschluss wird im Sinne der Anforderung des Art. 25.1 ČSN EN 60335-1 ed.3: 2012. in die Netzsteckdose, die beim Kessel platziert ist, vorgenommen. Die Steckdose muss folgende Bedingungen erfüllen: sie muss dem Schutz vor gefährlicher Berührung von nicht stromführenden Teilen in TN-Netzen (früher s.g, Nullleiter) entsprechen oder in TT-Netzen (früher s.g. Erdungsleiter) entsprechen und ihre Anbindung muss nach **ČSN 33 2180** so durchgeführt sein, dass der Schutzkontaktstift oben ist und der mittlere bzw. Nullleiter (bei Frontansicht) auf der rechten Öffnung angeschlossen ist. Die Netzspannung muss 230 V± 10 % sein.

Die Installation der Steckdose, die Anbindung des Raumthermostats und der Service der elektrischen Teile des Kessels kann nur eine Person mit entsprechender fachlichen elektrotechnischen Qualifikation nach Bekanntmachung Nr. 50/1978 Gbl. durchgeführt werden.

3.12.1 Anschluss des Zimmerthermostats

Für die Bedienung eines Kessels mir Raumthermostat lässt sich nur ein solches Thermostat verwenden, welches einen spannungslosen Kontakt hat, d.h. in den Kessel keine Fremdspannung einbringt.

Das Raumthermostat muss mit dem Kessel durch einen zweiadriges Leiter verbunden werden. Der empfohlene Querschnitt für die Anbindung des Zimmerthermostats für einen Kupferlitzenleiter ist von 0,5 bis 1,0 mm².

Die Klemmleiste für die Anbindung des Zimmerthermostats befindet sich an der Steuerelektronik des Kessels (siehe elektr. Schema der Kesselanbindung). Vom Herstellerwerk ist er mit einem Anschlussstück ausgestattet. Das Anschlussstück wird nur im Fall des Anschlusses eines Raumthermostats herausgenommen! Die Klemmleiste ist nach der Abnahme der Außenverkleidung, dem Herausklappen und anschließendem Abbauen des hinteren Teils des Bedienfelds zugängig.

3.12.2 Anschluss des Zimmerreglers mit OpenTherm-Kommunikation

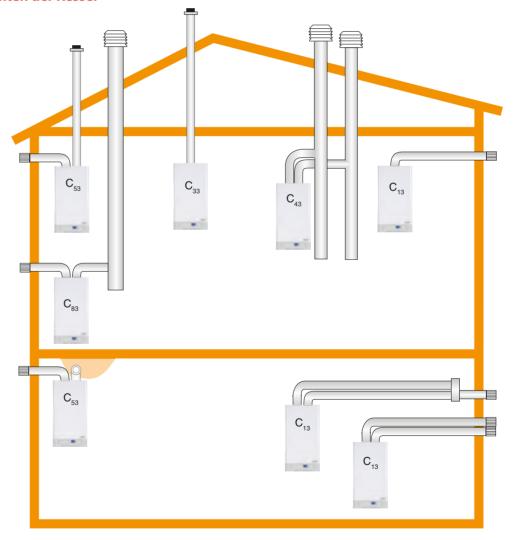
Die Anbindung eines intelligenten Zimmerreglers wird ähnlich wie die Anbindung eine klassischen Raumthermostats durchgeführt. Der Regler wird an der gleichen Anschlussklemme angeschlossen. Es können allerdings niemals beide Reglertypen gleichzeitig angeschlossen werden!

Technische Empfehlung zum Anschluss des Reglers mit OpenTherm-Kommunikation am Kessel

Das Anschlusskabel dient zur Stromversorgung des Reglers sowie zur Übertragung des Signals der gegenseitigen Kommunikation mittels OpenTherm-Protokoll zwischen Kesselautomatik und dem Regler.

Anzahl der Leitungsleiter : 2
Maximale Leitungslänge : 50 Meter
Maximaler Leitungswiderstand : 2 x 5 Ohm

Polarität : nicht polarisierter Anschluss (die Leiter sind vertauschbar)



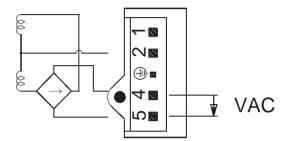
Zur Beschränkung von Kommunikationsstörungen ist es unerlässlich ein gedrehtes Paar oder abgeschirmtes Paar Leiter zu verwenden! Das Verbindungskabel darf nicht parallel mit einer keine Starkstromleitung verlaufen und nach Möglichkeit auch nicht kreuzen! Die Kabelabschirmung muss gegenseitig verbunden und am besten an einer Klemme der Erdung zum automatischen Kessel geerdet sein (die Abschirmung darf nicht an mehreren Stellen am Gehäuse geerdet sein!). Geeignet ist z.B. das Kabel SYKFY.

3.13 Installationsvarianten der Kessel

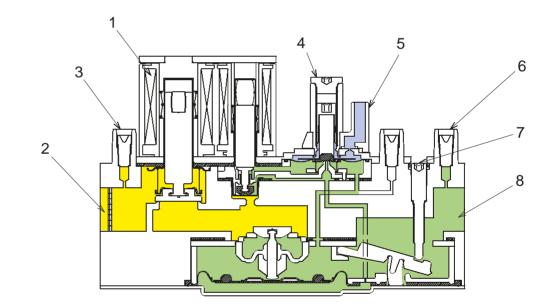
Ausführung:

- C 13 Mittige horizontale Ausführung mit Auslass in der Außenwand. Das Rohr kann auch doppelt sein, der Auslass kann entweder mittig sein oder so nah platziert sein (Platzierung innerhalb eines Quadrats mit 50 cm Seitenlänge), dass es den gleichen Witterungsbedingungen unterliegt.
- C₃₃ Mittige vertikale Ausführung mit Auslass auf dem Dach. Das Rohr kann auch doppelt sein, der Auslass kann entweder mittig sein oder so nah platziert sein (Platzierung innerhalb eines Ouadrats mit 50 cm Seitenlänge und die Entfernung zwischen den Ebenen beider Öffnungen muss kleiner als 50 cm sein), dass es den gleichen Witterungsbedingungen unterliegt.

- C₄₃ Getrennte Anbindung zu zwei Rohren eines gemeinsamen Schachtes. Das Rohr ist entweder mittig oder so nah platziert (Platzierung innerhalb eines Quadrats mit 50 cm Seitenlänge), dass es den gleichen Witterungsbedingungen unterliegt.
- C₅₃ Getrennte Rohre mit Auslass in der Außenwand oder auf dem Dach, in Zonen unterschiedlichen Drucks, aber in keinem Fall in zwei gegenüberliegenden Außenwänden.
- **C** ₈₃ Getrennte Anbindung mit Abgasabzug in einen eigenständigen oder gemeinsamen Kamin. Die Zuführung der Verbrennungsluft erfolgt von den Außenwänden.

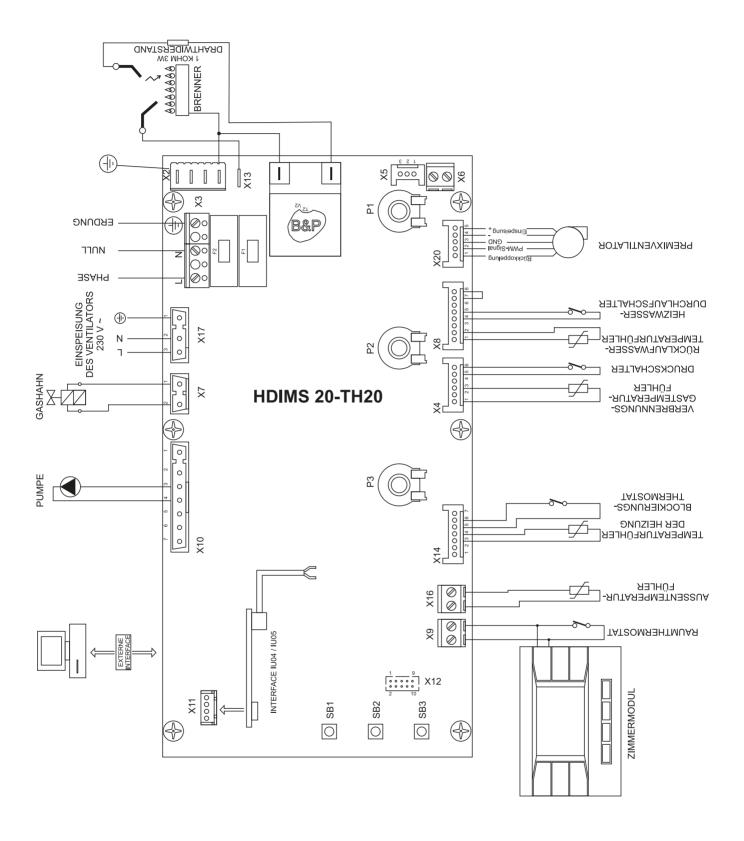

4. ERGÄNZENDE INFORMATIONEN FÜR DEN KUNDENDIENST

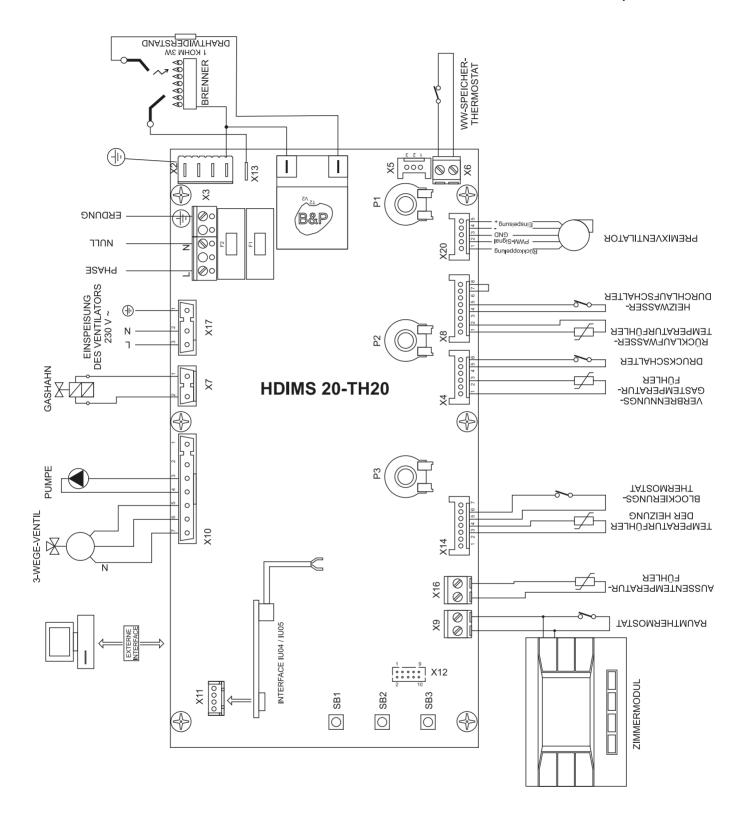
4.1 Gasarmatur SIEMENS VGU 86 - Einstellung


SIEMENS VGU 86 ist eine Gasarmatur mit Luft / Gas-Verhältnisregulierung. Ist mit zwei Solenoidventilen zur Blockierung der Gasströmung bei Untätigkeit des Kessels bestückt. Das Reguliersystem arbeitet in Abhängigkeit von dem rückgekoppelten Gasdrucksignal aus dem Mixer. Außer den absperrbaren Messstutzen des Eingangs-, Ausgangs- und Mittel-Gasdrucks sind Elemente zur Einstellung des richtigen Luft-Gas-Verhältnisses im ganzen Leistungsregulierbereich des Kessels vorhanden. Die Einstellung der Parameter der Gasarmatur, d.h., des Regulierbeginns und die Einstellung des Gemischverhältnisses nimmt der Kundendiensttechniker bei der Inbetriebnahme des Kessel vor. Diese Handlung ist unbedingt notwendig mit dem Schlüssel TORX T15 gemäß den mit dem Kundendienst-Analysengerät gemessenen Verbrennungsgas-Emissionswerten!

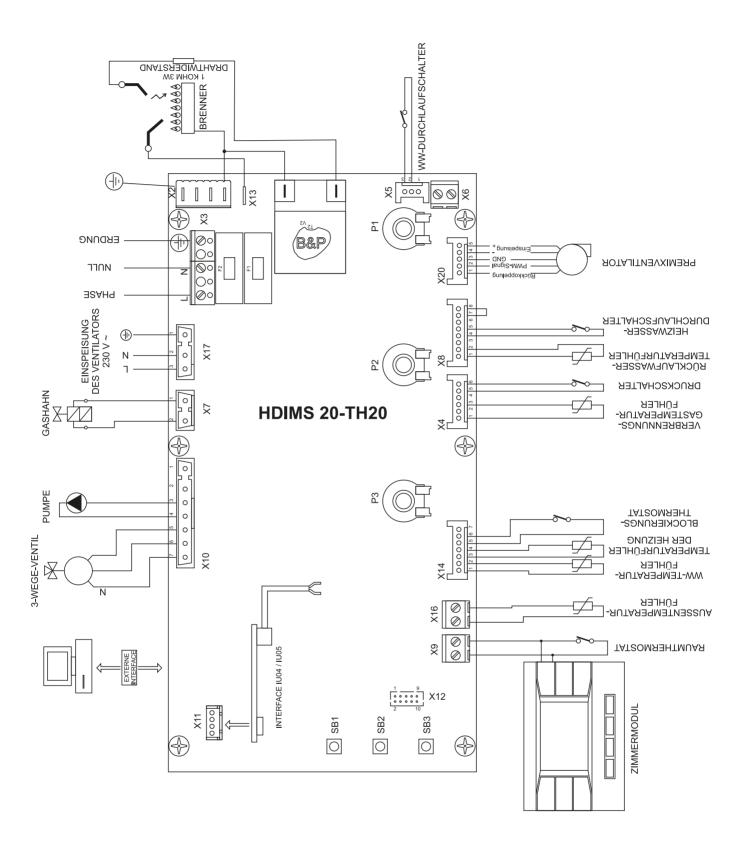
Elektrisches Anschlussschema der Spulenkonnektoren der Solenoiden

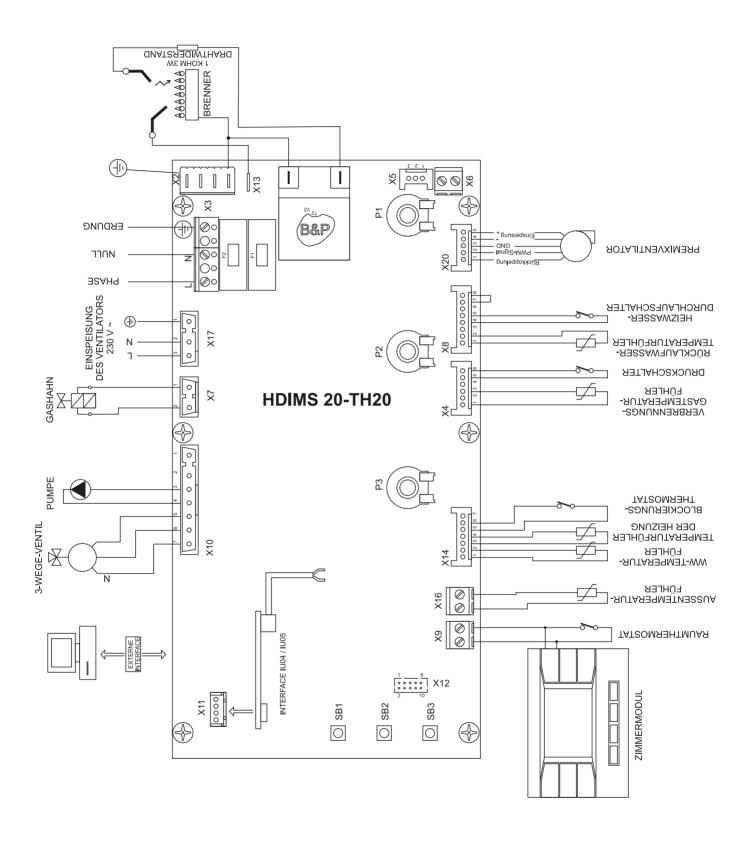
Die Gasarmatur umfasst zwei Solenoidventile EV1 (Solenoid des Gaseinlasses) und EV2 (Solenoid des Reguliersystems). Die Spulen befinden sich im Konnektor des parallel angeschlossenen Anschlusskabels (d.h., beide werden gleichzeitig eingeschaltet). Die Speisespannung der Spulen beträgt 230 V Wechselstrom.


- 1 Spulen der Solenoide
- 2 Gaseingang
- 3 Messstutzen des Eingangsgasdrucks
- 4 Einstellung des Regulierbeginns
- 5 Signaleingang des Luftdrucks
- 6 Messstutzen des Eingangsgasdrucks
- 7 Einstellung des Luft / Gas-Verhältnisses
- 8 Gasausgang



Die Einstellung der Gasarmatur führt ausschließlich der autorisierte Kundendienst der Organisation aus!


THERM 14, 17, 28 KD.A


THERM 14, 17, 28 KDZ.A THERM 17, 28 KDZ10.A

THERM 28 KDC.A

THERM 14, 17, 28 KDZ5.A

5. VERZEICHNIS ÜBER DIE DURCHFÜHRUNG VON REPARATUREN SOWIE VON JAHRESKONTROLLEN WÄHREND UND NACH DER GARANTIEZEIT

Durchgeführte Leistung	Vertragsorganisation	Unterschrift des Kunden	Datum des Eintrags

Hinweis zur Entsorgung der Verpackung und des Erzeugnisses nach Ablauf dessen Lebensdauer:

Sämtliche verwendete Materialien harmonisieren voll mit den Forderungen, die im §10 des Gesetzes Nr. 185/2001 d. Slg. und des §6 des Gesetzes Nr. 477/2001 d. Slg.

Die Produktverpackung wird normalerweise in die Altpapiersammlung, Verpackungsfolie in Sammelcontainer für Kunststoff gegeben. Die Teile des Kessels aus Stahl, Kupfer und Kupferlegierung werden im separatem Altstoffhandel für Metall abgegeben. Die Wärmeisolierung der Brennkammer ist gesundheitlich einwandfrei und wird mit dem üblichen öffentlichen Abfall entsorgt. Zur Einlagerung ist erforderlich Standardlagerbedingungen zu gewährleisten (nicht aggressives und staubfreies Milieu, Temperaturbereich von 5 bis 50 °C, Luftfeuchtigkeitsgehalt bis 75 %, unter Verhinderung biologischer Einflüsse, Erschütterungen und Vibrationen).

Zur Einhaltung der ökologischen Parameter des Produkts muss eine jährliche Durchsicht und Wartung abgesichert werden. Bestandteil dieser Durchsicht ist auch eine komplette Reinigung des Kessels und die Einstellung des Verbrennungsvorgang.

ANMERKUNG		

ANMERKUNG

6. QUALITÄTS- UND VOLLSTÄNDIGKEITSZERTIFIKAT DES PRODUKTS

Kondensations-Gaskessel THERM

Typenbezeichnung: THERM 14 KD.A

THERM 14 KDZ.A
THERM 14 KDZ5.A

THERM 17 KD.A THERM 17 KDZ.A THERM 17 KDZ5.A THERM 17 KDZ10.A THERM 28 KD.A THERM 28 KDZ.A THERM 28 KDZ5.A THERM 28 KDZ10.A THERM 28 KDC.A

Seriennummer:	

Ein mit dieser Bescheinigung geliefertes Produkt entspricht den geltenden technischen Nomen und technischen Bedingungen. Das Erzeugnis wurde gemäß dementsprechender Zeichnungsdokumentation, in gewünschten Qualität hergestellt und ist von der Maschinenbau-Prüfanstalt staatl. Betrieb , der autorisierten Stelle 202 zugelassen.

THERM 14 KD.A, KDZ.A, KDZ5.A

- Zertifikat über Typenprüfung gemäß EG-Richtlinie für Verbrauchsgeräte gasförmiger Brennstoffe 2009/142/ES, Nr. E-30-00327-13
- Zertifikat über Typenprüfung gemäß EG-Richtlinie auf Effektivität 92/42/EHS, Nr. E-30-00328-13

THERM 17 KD.A, KDZ.A, KDZ5.A, KDZ10.A

- Zertifikat über Typenprüfung gemäß EG-Richtlinie für Verbrauchsgeräte gasförmiger Brennstoffe 2009/142/ES, Nr. E-30-00804-13
- Zertifikat über Typenprüfung gemäß EG-Richtlinie auf Effektivität 92/42/EHS, Nr. E-30-00805-13

THERM 28 KD.A, KDZ.A, KDZ5.A, KDZ10.A, KDC.A

- Zertifikat über Typenprüfung gemäß EG-Richtlinie für Verbrauchsgeräte gasförmiger Brennstoffe 2009/142/ES, Nr. E-30-00806-13
- Zertifikat über Typenprüfung gemäß EG-Richtlinie auf Effektivität 92/42/EHS, Nr. E-30-00807-13

Die Kessel 14 KD.A, KDZ.A und KDZ5.A sind Inhaber der Schutzmarke "Umweltschonendes Produkt", Nr. 65 - 02. Sie zählen somit zu den Produkten mit minimalem, negativem Einfluss auf die Umwelt.

Die Kessel THERM 17 KD.A, KDZ.A, KDZ5.A und KDZ10.A sind Inhaber der Schutzmarke "Umweltschonendes Produkt", Nr. 65 - 03. Sie zählen somit zu den Produkten mit minimalem, negativem Einfluss auf die Umwelt.

Die Kessel THERM 28 KD.A, KDZ.A, KDZ5.A, KDZ10.A und KDC.A sind Inhaber der Schutzmarke "Umweltschonendes Produkt", Nr. 65 - 04. Sie zählen somit zu den Produkten mit minimalem, negativem Einfluss auf die Umwelt.

THERMONA, spol. s r. o.

Stará osada 258, 664 84 Zastávka u Brna Tschechische Republik Tel.: +420 544 500 511, fax: +420 544 500 506 thermona@thermona.cz www.thermona.cz

